Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.400

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,1,3,3,2,-1,0,1,1,0,0,1,0,2,2]
Flat knots (up to 7 crossings) with same phi are :['6.400']
Arrow polynomial of the knot is: -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.217', '6.219', '6.304', '6.349', '6.390', '6.400', '6.416', '6.515', '6.518', '6.530', '6.582', '6.616', '6.629', '6.641', '6.645', '6.702', '6.710', '6.715', '6.729', '6.733', '6.734', '6.802', '6.840', '6.845', '6.854', '6.860', '6.900', '6.905', '6.921', '6.924', '6.979', '6.980', '6.996', '6.1044', '6.1067', '6.1086', '6.1100', '6.1139', '6.1145', '6.1149', '6.1167', '6.1169', '6.1183', '6.1314']
Outer characteristic polynomial of the knot is: t^7+50t^5+97t^3+11t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.400']
2-strand cable arrow polynomial of the knot is: -16*K1**4 - 768*K1**2*K2**4 + 1280*K1**2*K2**3 - 4960*K1**2*K2**2 - 256*K1**2*K2*K4 + 4464*K1**2*K2 - 16*K1**2*K3**2 - 3500*K1**2 + 1376*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 864*K1*K2**2*K3 - 64*K1*K2**2*K5 - 288*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 4840*K1*K2*K3 + 400*K1*K3*K4 + 24*K1*K4*K5 - 128*K2**6 + 416*K2**4*K4 - 2088*K2**4 - 752*K2**2*K3**2 - 584*K2**2*K4**2 + 2080*K2**2*K4 - 2094*K2**2 + 280*K2*K3*K5 + 168*K2*K4*K6 - 1352*K3**2 - 594*K4**2 - 20*K5**2 - 2*K6**2 + 2824
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.400']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11546', 'vk6.11881', 'vk6.12895', 'vk6.13201', 'vk6.20689', 'vk6.22128', 'vk6.28207', 'vk6.29631', 'vk6.31328', 'vk6.31731', 'vk6.32490', 'vk6.32899', 'vk6.39661', 'vk6.41902', 'vk6.46249', 'vk6.47856', 'vk6.52326', 'vk6.52586', 'vk6.53168', 'vk6.53466', 'vk6.57619', 'vk6.58777', 'vk6.62291', 'vk6.63225', 'vk6.63828', 'vk6.63963', 'vk6.64272', 'vk6.64468', 'vk6.67082', 'vk6.67946', 'vk6.69690', 'vk6.70372']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U4U3O6U5U1U2U6
R3 orbit {'O1O2O3O4O5U4U3O6U5U1U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U6U4U5U1O6U3U2
Gauss code of K* O1O2O3O4U2U3U5U6U1O6O5U4
Gauss code of -K* O1O2O3O4U1O5O6U4U6U5U2U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 -1 -1 1 3],[ 2 0 1 -1 -1 2 3],[ 0 -1 0 -1 -1 2 2],[ 1 1 1 0 0 2 1],[ 1 1 1 0 0 1 1],[-1 -2 -2 -2 -1 0 1],[-3 -3 -2 -1 -1 -1 0]]
Primitive based matrix [[ 0 3 1 0 -1 -1 -2],[-3 0 -1 -2 -1 -1 -3],[-1 1 0 -2 -1 -2 -2],[ 0 2 2 0 -1 -1 -1],[ 1 1 1 1 0 0 1],[ 1 1 2 1 0 0 1],[ 2 3 2 1 -1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,1,1,2,1,2,1,1,3,2,1,2,2,1,1,1,0,-1,-1]
Phi over symmetry [-3,-1,0,1,1,2,1,1,3,3,2,-1,0,1,1,0,0,1,0,2,2]
Phi of -K [-2,-1,-1,0,1,3,2,2,1,1,2,0,0,0,3,0,1,3,-1,1,1]
Phi of K* [-3,-1,0,1,1,2,1,1,3,3,2,-1,0,1,1,0,0,1,0,2,2]
Phi of -K* [-2,-1,-1,0,1,3,-1,-1,1,2,3,0,1,1,1,1,2,1,2,2,1]
Symmetry type of based matrix c
u-polynomial -t^3+t^2+t
Normalized Jones-Krushkal polynomial 5z^2+18z+17
Enhanced Jones-Krushkal polynomial -4w^4z^2+9w^3z^2-8w^3z+26w^2z+17w
Inner characteristic polynomial t^6+34t^4+28t^2
Outer characteristic polynomial t^7+50t^5+97t^3+11t
Flat arrow polynomial -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
2-strand cable arrow polynomial -16*K1**4 - 768*K1**2*K2**4 + 1280*K1**2*K2**3 - 4960*K1**2*K2**2 - 256*K1**2*K2*K4 + 4464*K1**2*K2 - 16*K1**2*K3**2 - 3500*K1**2 + 1376*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 864*K1*K2**2*K3 - 64*K1*K2**2*K5 - 288*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 4840*K1*K2*K3 + 400*K1*K3*K4 + 24*K1*K4*K5 - 128*K2**6 + 416*K2**4*K4 - 2088*K2**4 - 752*K2**2*K3**2 - 584*K2**2*K4**2 + 2080*K2**2*K4 - 2094*K2**2 + 280*K2*K3*K5 + 168*K2*K4*K6 - 1352*K3**2 - 594*K4**2 - 20*K5**2 - 2*K6**2 + 2824
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact