Gauss code |
O1O2O3O4O5O6U1U2U4U3U6U5 |
R3 orbit |
{'O1O2O3O4O5O6U1U2U4U3U6U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U2U1U4U3U5U6 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3O4O5O6U2U1U4U3U5U6 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 -3 0 0 4 4],[ 5 0 1 3 2 5 4],[ 3 -1 0 2 1 4 3],[ 0 -3 -2 0 0 3 2],[ 0 -2 -1 0 0 2 1],[-4 -5 -4 -3 -2 0 0],[-4 -4 -3 -2 -1 0 0]] |
Primitive based matrix |
[[ 0 4 4 0 0 -3 -5],[-4 0 0 -1 -2 -3 -4],[-4 0 0 -2 -3 -4 -5],[ 0 1 2 0 0 -1 -2],[ 0 2 3 0 0 -2 -3],[ 3 3 4 1 2 0 -1],[ 5 4 5 2 3 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-4,0,0,3,5,0,1,2,3,4,2,3,4,5,0,1,2,2,3,1] |
Phi over symmetry |
[-5,-3,0,0,4,4,1,2,3,4,5,1,2,3,4,0,1,2,2,3,0] |
Phi of -K |
[-5,-3,0,0,4,4,1,2,3,4,5,1,2,3,4,0,1,2,2,3,0] |
Phi of K* |
[-4,-4,0,0,3,5,0,1,2,3,4,2,3,4,5,0,1,2,2,3,1] |
Phi of -K* |
[-5,-3,0,0,4,4,1,2,3,4,5,1,2,3,4,0,1,2,2,3,0] |
Symmetry type of based matrix |
+ |
u-polynomial |
t^5-2t^4+t^3 |
Normalized Jones-Krushkal polynomial |
9z^2+29z+23 |
Enhanced Jones-Krushkal polynomial |
9w^3z^2+29w^2z+23w |
Inner characteristic polynomial |
t^6+103t^4+27t^2+1 |
Outer characteristic polynomial |
t^7+169t^5+131t^3+7t |
Flat arrow polynomial |
-2*K1*K4 + K3 + K5 + 1 |
2-strand cable arrow polynomial |
-1152*K1**4 + 1536*K1**3*K2*K3 - 1024*K1**2*K2**2*K3**2 - 2624*K1**2*K2**2 - 1600*K1**2*K2*K4 + 3664*K1**2*K2 - 1472*K1**2*K3**2 - 192*K1**2*K3*K5 - 128*K1**2*K4**2 - 3104*K1**2 + 640*K1*K2**3*K3 + 1408*K1*K2**2*K3*K4 - 960*K1*K2**2*K3 - 192*K1*K2**2*K5 + 64*K1*K2**2*K6*K7 + 512*K1*K2*K3**3 - 192*K1*K2*K3*K6 + 4624*K1*K2*K3 - 128*K1*K2*K4*K5 - 64*K1*K2*K4*K7 - 64*K1*K2*K5*K6 + 2560*K1*K3*K4 + 656*K1*K4*K5 + 32*K1*K6*K7 - 2*K10**2 + 8*K10*K2*K8 - 224*K2**4 + 64*K2**3*K3*K5 - 1088*K2**2*K3**2 - 576*K2**2*K4**2 + 1440*K2**2*K4 - 64*K2**2*K5**2 - 32*K2**2*K6**2 - 64*K2**2*K7**2 - 8*K2**2*K8**2 - 2788*K2**2 - 320*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 736*K2*K3*K5 + 384*K2*K4*K6 + 240*K2*K5*K7 + 8*K2*K6*K8 + 16*K2*K7*K9 - 128*K3**4 + 96*K3**2*K6 - 1720*K3**2 + 48*K3*K4*K7 + 16*K3*K5*K8 - 1280*K4**2 - 472*K5**2 - 66*K6**2 - 96*K7**2 - 12*K8**2 + 3146 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {3}, {1, 2}]] |
If K is slice |
False |