Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.397

Min(phi) over symmetries of the knot is: [-4,-2,1,1,2,2,0,1,2,4,5,0,0,1,2,0,0,0,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.397']
Arrow polynomial of the knot is: 4*K1**2*K2 - 2*K1*K3 - K2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.64', '6.74', '6.106', '6.178', '6.300', '6.397', '6.479', '6.481', '6.500']
Outer characteristic polynomial of the knot is: t^7+81t^5+107t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.397']
2-strand cable arrow polynomial of the knot is: -512*K1**4 + 384*K1**3*K2*K3 - 1664*K1**2*K2**2 - 608*K1**2*K2*K4 + 2200*K1**2*K2 - 832*K1**2*K3**2 - 2768*K1**2 + 256*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 512*K1*K2**2*K3 - 32*K1*K2**2*K5 - 96*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 4496*K1*K2*K3 - 32*K1*K2*K4*K5 + 2176*K1*K3*K4 + 48*K1*K4*K5 + 32*K1*K5*K6 - 32*K2**4*K4**2 + 128*K2**4*K4 - 544*K2**4 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 736*K2**2*K3**2 - 304*K2**2*K4**2 + 936*K2**2*K4 - 8*K2**2*K6**2 - 2184*K2**2 - 320*K2*K3**2*K4 + 520*K2*K3*K5 + 368*K2*K4*K6 + 144*K3**2*K6 - 2208*K3**2 - 1034*K4**2 - 128*K5**2 - 136*K6**2 + 2808
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.397']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17138', 'vk6.17381', 'vk6.20598', 'vk6.22008', 'vk6.23547', 'vk6.23885', 'vk6.28064', 'vk6.29519', 'vk6.35715', 'vk6.36134', 'vk6.39478', 'vk6.41681', 'vk6.43046', 'vk6.43352', 'vk6.46067', 'vk6.47730', 'vk6.55283', 'vk6.55531', 'vk6.57474', 'vk6.58636', 'vk6.59709', 'vk6.60051', 'vk6.62147', 'vk6.63107', 'vk6.65092', 'vk6.65278', 'vk6.67002', 'vk6.67867', 'vk6.68338', 'vk6.68486', 'vk6.69620', 'vk6.70310']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U4U3O6U2U1U6U5
R3 orbit {'O1O2O3O4O5U4U3O6U2U1U6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U1U6U5U4O6U3U2
Gauss code of K* O1O2O3O4U2U1U5U6U4O6O5U3
Gauss code of -K* O1O2O3O4U2O5O6U1U6U5U4U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 -1 -1 4 2],[ 2 0 0 0 0 5 2],[ 2 0 0 0 0 4 1],[ 1 0 0 0 0 2 0],[ 1 0 0 0 0 1 0],[-4 -5 -4 -2 -1 0 0],[-2 -2 -1 0 0 0 0]]
Primitive based matrix [[ 0 4 2 -1 -1 -2 -2],[-4 0 0 -1 -2 -4 -5],[-2 0 0 0 0 -1 -2],[ 1 1 0 0 0 0 0],[ 1 2 0 0 0 0 0],[ 2 4 1 0 0 0 0],[ 2 5 2 0 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-4,-2,1,1,2,2,0,1,2,4,5,0,0,1,2,0,0,0,0,0,0]
Phi over symmetry [-4,-2,1,1,2,2,0,1,2,4,5,0,0,1,2,0,0,0,0,0,0]
Phi of -K [-2,-2,-1,-1,2,4,0,1,1,2,1,1,1,3,2,0,3,3,3,4,2]
Phi of K* [-4,-2,1,1,2,2,2,3,4,1,2,3,3,2,3,0,1,1,1,1,0]
Phi of -K* [-2,-2,-1,-1,2,4,0,0,0,1,4,0,0,2,5,0,0,1,0,2,0]
Symmetry type of based matrix c
u-polynomial -t^4+t^2+2t
Normalized Jones-Krushkal polynomial 9z^2+30z+25
Enhanced Jones-Krushkal polynomial 9w^3z^2+30w^2z+25w
Inner characteristic polynomial t^6+51t^4+34t^2
Outer characteristic polynomial t^7+81t^5+107t^3+7t
Flat arrow polynomial 4*K1**2*K2 - 2*K1*K3 - K2
2-strand cable arrow polynomial -512*K1**4 + 384*K1**3*K2*K3 - 1664*K1**2*K2**2 - 608*K1**2*K2*K4 + 2200*K1**2*K2 - 832*K1**2*K3**2 - 2768*K1**2 + 256*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 512*K1*K2**2*K3 - 32*K1*K2**2*K5 - 96*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 4496*K1*K2*K3 - 32*K1*K2*K4*K5 + 2176*K1*K3*K4 + 48*K1*K4*K5 + 32*K1*K5*K6 - 32*K2**4*K4**2 + 128*K2**4*K4 - 544*K2**4 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 736*K2**2*K3**2 - 304*K2**2*K4**2 + 936*K2**2*K4 - 8*K2**2*K6**2 - 2184*K2**2 - 320*K2*K3**2*K4 + 520*K2*K3*K5 + 368*K2*K4*K6 + 144*K3**2*K6 - 2208*K3**2 - 1034*K4**2 - 128*K5**2 - 136*K6**2 + 2808
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact