Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.375

Min(phi) over symmetries of the knot is: [-4,-2,0,1,2,3,0,3,1,4,4,1,0,2,2,0,1,2,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.375']
Arrow polynomial of the knot is: 12*K1**3 + 4*K1**2*K2 - 6*K1**2 - 10*K1*K2 - 2*K1*K3 - 4*K1 + 2*K2 + 2*K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.375']
Outer characteristic polynomial of the knot is: t^7+91t^5+69t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.375']
2-strand cable arrow polynomial of the knot is: 256*K1**4*K2**3 - 1536*K1**4*K2**2 + 2688*K1**4*K2 - 2528*K1**4 - 128*K1**3*K2**2*K3 + 640*K1**3*K2*K3 - 1024*K1**3*K3 - 1216*K1**2*K2**4 + 4960*K1**2*K2**3 - 11648*K1**2*K2**2 - 1024*K1**2*K2*K4 + 9304*K1**2*K2 - 288*K1**2*K3**2 - 4956*K1**2 + 2752*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 3136*K1*K2**2*K3 - 512*K1*K2**2*K5 - 384*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 9584*K1*K2*K3 + 1016*K1*K3*K4 + 120*K1*K4*K5 + 8*K1*K5*K6 - 224*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 736*K2**4*K4 - 4184*K2**4 + 288*K2**3*K3*K5 + 32*K2**3*K4*K6 - 128*K2**3*K6 - 1936*K2**2*K3**2 - 32*K2**2*K3*K7 - 536*K2**2*K4**2 + 3336*K2**2*K4 - 96*K2**2*K5**2 - 8*K2**2*K6**2 - 2612*K2**2 + 984*K2*K3*K5 + 168*K2*K4*K6 + 8*K2*K5*K7 - 2076*K3**2 - 720*K4**2 - 152*K5**2 - 20*K6**2 + 4190
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.375']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16918', 'vk6.17162', 'vk6.20513', 'vk6.21897', 'vk6.23304', 'vk6.23605', 'vk6.27952', 'vk6.29431', 'vk6.35332', 'vk6.35766', 'vk6.39366', 'vk6.41546', 'vk6.42826', 'vk6.43110', 'vk6.45931', 'vk6.47618', 'vk6.55069', 'vk6.55320', 'vk6.57378', 'vk6.58537', 'vk6.59460', 'vk6.59753', 'vk6.62029', 'vk6.63025', 'vk6.64906', 'vk6.65121', 'vk6.66927', 'vk6.67778', 'vk6.68211', 'vk6.68357', 'vk6.69529', 'vk6.70235']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U4U1O6U2U3U6U5
R3 orbit {'O1O2O3O4O5U4U1O6U2U3U6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U1U6U3U4O6U5U2
Gauss code of K* O1O2O3O4U5U1U2U6U4O6O5U3
Gauss code of -K* O1O2O3O4U2O5O6U1U6U3U4U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 0 -1 4 2],[ 3 0 1 2 0 4 2],[ 2 -1 0 1 0 4 2],[ 0 -2 -1 0 0 3 1],[ 1 0 0 0 0 1 0],[-4 -4 -4 -3 -1 0 0],[-2 -2 -2 -1 0 0 0]]
Primitive based matrix [[ 0 4 2 0 -1 -2 -3],[-4 0 0 -3 -1 -4 -4],[-2 0 0 -1 0 -2 -2],[ 0 3 1 0 0 -1 -2],[ 1 1 0 0 0 0 0],[ 2 4 2 1 0 0 -1],[ 3 4 2 2 0 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-4,-2,0,1,2,3,0,3,1,4,4,1,0,2,2,0,1,2,0,0,1]
Phi over symmetry [-4,-2,0,1,2,3,0,3,1,4,4,1,0,2,2,0,1,2,0,0,1]
Phi of -K [-3,-2,-1,0,2,4,0,2,1,3,3,1,1,2,2,1,3,4,1,1,2]
Phi of K* [-4,-2,0,1,2,3,2,1,4,2,3,1,3,2,3,1,1,1,1,2,0]
Phi of -K* [-3,-2,-1,0,2,4,1,0,2,2,4,0,1,2,4,0,0,1,1,3,0]
Symmetry type of based matrix c
u-polynomial -t^4+t^3+t
Normalized Jones-Krushkal polynomial 8z^2+29z+27
Enhanced Jones-Krushkal polynomial 8w^3z^2+29w^2z+27w
Inner characteristic polynomial t^6+57t^4+25t^2+1
Outer characteristic polynomial t^7+91t^5+69t^3+7t
Flat arrow polynomial 12*K1**3 + 4*K1**2*K2 - 6*K1**2 - 10*K1*K2 - 2*K1*K3 - 4*K1 + 2*K2 + 2*K3 + 3
2-strand cable arrow polynomial 256*K1**4*K2**3 - 1536*K1**4*K2**2 + 2688*K1**4*K2 - 2528*K1**4 - 128*K1**3*K2**2*K3 + 640*K1**3*K2*K3 - 1024*K1**3*K3 - 1216*K1**2*K2**4 + 4960*K1**2*K2**3 - 11648*K1**2*K2**2 - 1024*K1**2*K2*K4 + 9304*K1**2*K2 - 288*K1**2*K3**2 - 4956*K1**2 + 2752*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 3136*K1*K2**2*K3 - 512*K1*K2**2*K5 - 384*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 9584*K1*K2*K3 + 1016*K1*K3*K4 + 120*K1*K4*K5 + 8*K1*K5*K6 - 224*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 736*K2**4*K4 - 4184*K2**4 + 288*K2**3*K3*K5 + 32*K2**3*K4*K6 - 128*K2**3*K6 - 1936*K2**2*K3**2 - 32*K2**2*K3*K7 - 536*K2**2*K4**2 + 3336*K2**2*K4 - 96*K2**2*K5**2 - 8*K2**2*K6**2 - 2612*K2**2 + 984*K2*K3*K5 + 168*K2*K4*K6 + 8*K2*K5*K7 - 2076*K3**2 - 720*K4**2 - 152*K5**2 - 20*K6**2 + 4190
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}]]
If K is slice False
Contact