Min(phi) over symmetries of the knot is: [-4,-2,0,1,2,3,0,3,1,4,4,1,0,2,2,0,1,2,0,0,1] |
Flat knots (up to 7 crossings) with same phi are :['6.375'] |
Arrow polynomial of the knot is: 12*K1**3 + 4*K1**2*K2 - 6*K1**2 - 10*K1*K2 - 2*K1*K3 - 4*K1 + 2*K2 + 2*K3 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.375'] |
Outer characteristic polynomial of the knot is: t^7+91t^5+69t^3+7t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.375'] |
2-strand cable arrow polynomial of the knot is: 256*K1**4*K2**3 - 1536*K1**4*K2**2 + 2688*K1**4*K2 - 2528*K1**4 - 128*K1**3*K2**2*K3 + 640*K1**3*K2*K3 - 1024*K1**3*K3 - 1216*K1**2*K2**4 + 4960*K1**2*K2**3 - 11648*K1**2*K2**2 - 1024*K1**2*K2*K4 + 9304*K1**2*K2 - 288*K1**2*K3**2 - 4956*K1**2 + 2752*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 3136*K1*K2**2*K3 - 512*K1*K2**2*K5 - 384*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 9584*K1*K2*K3 + 1016*K1*K3*K4 + 120*K1*K4*K5 + 8*K1*K5*K6 - 224*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 736*K2**4*K4 - 4184*K2**4 + 288*K2**3*K3*K5 + 32*K2**3*K4*K6 - 128*K2**3*K6 - 1936*K2**2*K3**2 - 32*K2**2*K3*K7 - 536*K2**2*K4**2 + 3336*K2**2*K4 - 96*K2**2*K5**2 - 8*K2**2*K6**2 - 2612*K2**2 + 984*K2*K3*K5 + 168*K2*K4*K6 + 8*K2*K5*K7 - 2076*K3**2 - 720*K4**2 - 152*K5**2 - 20*K6**2 + 4190 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.375'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16918', 'vk6.17162', 'vk6.20513', 'vk6.21897', 'vk6.23304', 'vk6.23605', 'vk6.27952', 'vk6.29431', 'vk6.35332', 'vk6.35766', 'vk6.39366', 'vk6.41546', 'vk6.42826', 'vk6.43110', 'vk6.45931', 'vk6.47618', 'vk6.55069', 'vk6.55320', 'vk6.57378', 'vk6.58537', 'vk6.59460', 'vk6.59753', 'vk6.62029', 'vk6.63025', 'vk6.64906', 'vk6.65121', 'vk6.66927', 'vk6.67778', 'vk6.68211', 'vk6.68357', 'vk6.69529', 'vk6.70235'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U4U1O6U2U3U6U5 |
R3 orbit | {'O1O2O3O4O5U4U1O6U2U3U6U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U1U6U3U4O6U5U2 |
Gauss code of K* | O1O2O3O4U5U1U2U6U4O6O5U3 |
Gauss code of -K* | O1O2O3O4U2O5O6U1U6U3U4U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -2 0 -1 4 2],[ 3 0 1 2 0 4 2],[ 2 -1 0 1 0 4 2],[ 0 -2 -1 0 0 3 1],[ 1 0 0 0 0 1 0],[-4 -4 -4 -3 -1 0 0],[-2 -2 -2 -1 0 0 0]] |
Primitive based matrix | [[ 0 4 2 0 -1 -2 -3],[-4 0 0 -3 -1 -4 -4],[-2 0 0 -1 0 -2 -2],[ 0 3 1 0 0 -1 -2],[ 1 1 0 0 0 0 0],[ 2 4 2 1 0 0 -1],[ 3 4 2 2 0 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-4,-2,0,1,2,3,0,3,1,4,4,1,0,2,2,0,1,2,0,0,1] |
Phi over symmetry | [-4,-2,0,1,2,3,0,3,1,4,4,1,0,2,2,0,1,2,0,0,1] |
Phi of -K | [-3,-2,-1,0,2,4,0,2,1,3,3,1,1,2,2,1,3,4,1,1,2] |
Phi of K* | [-4,-2,0,1,2,3,2,1,4,2,3,1,3,2,3,1,1,1,1,2,0] |
Phi of -K* | [-3,-2,-1,0,2,4,1,0,2,2,4,0,1,2,4,0,0,1,1,3,0] |
Symmetry type of based matrix | c |
u-polynomial | -t^4+t^3+t |
Normalized Jones-Krushkal polynomial | 8z^2+29z+27 |
Enhanced Jones-Krushkal polynomial | 8w^3z^2+29w^2z+27w |
Inner characteristic polynomial | t^6+57t^4+25t^2+1 |
Outer characteristic polynomial | t^7+91t^5+69t^3+7t |
Flat arrow polynomial | 12*K1**3 + 4*K1**2*K2 - 6*K1**2 - 10*K1*K2 - 2*K1*K3 - 4*K1 + 2*K2 + 2*K3 + 3 |
2-strand cable arrow polynomial | 256*K1**4*K2**3 - 1536*K1**4*K2**2 + 2688*K1**4*K2 - 2528*K1**4 - 128*K1**3*K2**2*K3 + 640*K1**3*K2*K3 - 1024*K1**3*K3 - 1216*K1**2*K2**4 + 4960*K1**2*K2**3 - 11648*K1**2*K2**2 - 1024*K1**2*K2*K4 + 9304*K1**2*K2 - 288*K1**2*K3**2 - 4956*K1**2 + 2752*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 3136*K1*K2**2*K3 - 512*K1*K2**2*K5 - 384*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 9584*K1*K2*K3 + 1016*K1*K3*K4 + 120*K1*K4*K5 + 8*K1*K5*K6 - 224*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 736*K2**4*K4 - 4184*K2**4 + 288*K2**3*K3*K5 + 32*K2**3*K4*K6 - 128*K2**3*K6 - 1936*K2**2*K3**2 - 32*K2**2*K3*K7 - 536*K2**2*K4**2 + 3336*K2**2*K4 - 96*K2**2*K5**2 - 8*K2**2*K6**2 - 2612*K2**2 + 984*K2*K3*K5 + 168*K2*K4*K6 + 8*K2*K5*K7 - 2076*K3**2 - 720*K4**2 - 152*K5**2 - 20*K6**2 + 4190 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}]] |
If K is slice | False |