Gauss code |
O1O2O3O4O5U3U5O6U1U6U2U4 |
R3 orbit |
{'O1O2O3O4O5U3U5O6U1U6U2U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U2U4U6U5O6U1U3 |
Gauss code of K* |
O1O2O3O4U1U3U5U4U6O5O6U2 |
Gauss code of -K* |
O1O2O3O4U3O5O6U5U1U6U2U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 0 -2 3 1 1],[ 3 0 2 -1 4 1 1],[ 0 -2 0 -1 2 1 0],[ 2 1 1 0 2 1 0],[-3 -4 -2 -2 0 0 0],[-1 -1 -1 -1 0 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 3 1 1 0 -2 -3],[-3 0 0 0 -2 -2 -4],[-1 0 0 0 0 0 -1],[-1 0 0 0 -1 -1 -1],[ 0 2 0 1 0 -1 -2],[ 2 2 0 1 1 0 1],[ 3 4 1 1 2 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,0,2,3,0,0,2,2,4,0,0,0,1,1,1,1,1,2,-1] |
Phi over symmetry |
[-3,-2,0,1,1,3,-1,2,1,1,4,1,0,1,2,0,1,2,0,0,0] |
Phi of -K |
[-3,-2,0,1,1,3,2,1,3,3,2,1,2,3,3,0,1,1,0,2,2] |
Phi of K* |
[-3,-1,-1,0,2,3,2,2,1,3,2,0,0,2,3,1,3,3,1,1,2] |
Phi of -K* |
[-3,-2,0,1,1,3,-1,2,1,1,4,1,0,1,2,0,1,2,0,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
2z^2+19z+31 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+19w^2z+31w |
Inner characteristic polynomial |
t^6+34t^4+27t^2 |
Outer characteristic polynomial |
t^7+58t^5+56t^3+4t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 8*K1**2 - 4*K1*K2 - 2*K1*K3 - K1 - 2*K2**2 + 3*K2 + K3 + K4 + 5 |
2-strand cable arrow polynomial |
-64*K1**6 + 448*K1**4*K2 - 1776*K1**4 + 256*K1**3*K2*K3 - 1184*K1**3*K3 - 128*K1**2*K2**4 + 192*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 2464*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 64*K1**2*K2*K4**2 - 384*K1**2*K2*K4 + 5664*K1**2*K2 - 1136*K1**2*K3**2 - 96*K1**2*K3*K5 - 240*K1**2*K4**2 - 96*K1**2*K4*K6 - 4276*K1**2 + 384*K1*K2**3*K3 - 512*K1*K2**2*K3 - 64*K1*K2**2*K5 + 96*K1*K2*K3**3 + 32*K1*K2*K3*K4**2 - 672*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 5976*K1*K2*K3 - 128*K1*K3**2*K5 - 32*K1*K3*K4*K6 + 1784*K1*K3*K4 + 368*K1*K4*K5 + 56*K1*K5*K6 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 96*K2**4*K4 - 432*K2**4 + 32*K2**3*K3*K5 + 32*K2**3*K4*K6 + 64*K2**2*K3**2*K4 - 640*K2**2*K3**2 + 32*K2**2*K4**3 - 240*K2**2*K4**2 + 976*K2**2*K4 - 8*K2**2*K6**2 - 3346*K2**2 - 32*K2*K3*K4*K5 + 768*K2*K3*K5 - 32*K2*K4**2*K6 + 176*K2*K4*K6 + 8*K2*K6*K8 - 192*K3**4 - 80*K3**2*K4**2 + 192*K3**2*K6 - 2208*K3**2 + 64*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 742*K4**2 - 188*K5**2 - 70*K6**2 - 8*K7**2 - 2*K8**2 + 3614 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {5}, {3, 4}, {2}]] |
If K is slice |
False |