Gauss code |
O1O2O3O4O5U3U4O6U2U1U6U5 |
R3 orbit |
{'O1O2O3O4O5U3U4O6U2U1U6U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U1U6U5U4O6U2U3 |
Gauss code of K* |
O1O2O3O4U2U1U5U6U4O5O6U3 |
Gauss code of -K* |
O1O2O3O4U2O5O6U1U5U6U4U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
True |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -2 -2 0 4 2],[ 2 0 0 -1 1 5 2],[ 2 0 0 -1 1 4 1],[ 2 1 1 0 1 2 0],[ 0 -1 -1 -1 0 1 0],[-4 -5 -4 -2 -1 0 0],[-2 -2 -1 0 0 0 0]] |
Primitive based matrix |
[[ 0 4 2 0 -2 -2 -2],[-4 0 0 -1 -2 -4 -5],[-2 0 0 0 0 -1 -2],[ 0 1 0 0 -1 -1 -1],[ 2 2 0 1 0 1 1],[ 2 4 1 1 -1 0 0],[ 2 5 2 1 -1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-2,0,2,2,2,0,1,2,4,5,0,0,1,2,1,1,1,-1,-1,0] |
Phi over symmetry |
[-4,-2,0,2,2,2,0,1,2,4,5,0,0,1,2,1,1,1,-1,-1,0] |
Phi of -K |
[-2,-2,-2,0,2,4,-1,-1,1,4,4,0,1,2,1,1,3,2,2,3,2] |
Phi of K* |
[-4,-2,0,2,2,2,2,3,1,2,4,2,2,3,4,1,1,1,0,-1,-1] |
Phi of -K* |
[-2,-2,-2,0,2,4,-1,0,1,1,4,1,1,0,2,1,2,5,0,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^4+2t^2 |
Normalized Jones-Krushkal polynomial |
5z^2+14z+9 |
Enhanced Jones-Krushkal polynomial |
-4w^4z^2+9w^3z^2+14w^2z+9 |
Inner characteristic polynomial |
t^6+56t^4+48t^2 |
Outer characteristic polynomial |
t^7+88t^5+128t^3 |
Flat arrow polynomial |
-8*K1**4 + 4*K1**2*K2 + 4*K1**2 + 1 |
2-strand cable arrow polynomial |
-128*K2**8 + 128*K2**6*K4 - 1088*K2**6 - 32*K2**4*K4**2 + 800*K2**4*K4 - 1504*K2**4 - 208*K2**2*K4**2 + 1592*K2**2*K4 + 384*K2**2 + 72*K2*K4*K6 - 336*K4**2 - 16*K6**2 + 334 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}]] |
If K is slice |
False |