Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.346

Min(phi) over symmetries of the knot is: [-3,-3,-1,2,2,3,0,0,1,2,4,0,2,3,5,0,0,1,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.346']
Arrow polynomial of the knot is: -2*K1*K2 + K1 + K3 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.1', '4.3', '6.59', '6.66', '6.112', '6.215', '6.297', '6.306', '6.346', '6.351', '6.352', '6.353', '6.368', '6.393', '6.398', '6.402', '6.420', '6.422', '6.524', '6.529', '6.630', '6.632', '6.633', '6.642', '6.684', '6.707', '6.708', '6.717', '6.719', '6.721', '6.722', '6.737', '6.793', '6.835', '6.837', '6.847', '6.849', '6.857', '6.858', '6.883', '6.902', '6.913', '6.1084', '6.1092', '6.1097', '6.1136', '6.1146', '6.1155', '6.1159', '6.1374', '7.349', '7.365', '7.690', '7.2260', '7.2269', '7.2612', '7.2624', '7.2972', '7.2975', '7.4214', '7.4542', '7.4546', '7.9686', '7.9695', '7.9947', '7.10639', '7.10643', '7.10829', '7.10833', '7.13433', '7.15124', '7.15128', '7.15638', '7.15647', '7.15703', '7.15845', '7.16115', '7.16120', '7.16150', '7.19418', '7.19470', '7.19474', '7.19871', '7.20310', '7.20362', '7.20421', '7.20424', '7.23942', '7.24011', '7.24100', '7.24114', '7.24116', '7.24445', '7.26258', '7.26318', '7.26811', '7.26827', '7.27967', '7.28040', '7.28124', '7.28138', '7.29092', '7.29107', '7.29452', '7.29853', '7.30091', '7.30098', '7.30140', '7.30193', '7.30339', '7.30350', '7.30354']
Outer characteristic polynomial of the knot is: t^7+96t^5+144t^3+12t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.346']
2-strand cable arrow polynomial of the knot is: 512*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 2912*K1**2*K2**2 - 608*K1**2*K2*K4 + 3400*K1**2*K2 - 128*K1**2*K4**2 - 3232*K1**2 + 640*K1*K2**3*K3 - 832*K1*K2**2*K3 - 544*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 4072*K1*K2*K3 + 864*K1*K3*K4 + 248*K1*K4*K5 - 128*K2**6 + 320*K2**4*K4 - 1664*K2**4 - 96*K2**3*K6 - 608*K2**2*K3**2 - 328*K2**2*K4**2 + 2264*K2**2*K4 - 2566*K2**2 - 32*K2*K3**2*K4 + 776*K2*K3*K5 + 336*K2*K4*K6 + 40*K3**2*K6 - 1432*K3**2 - 900*K4**2 - 256*K5**2 - 106*K6**2 + 2866
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.346']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11516', 'vk6.11847', 'vk6.12864', 'vk6.13173', 'vk6.20616', 'vk6.22038', 'vk6.28094', 'vk6.29539', 'vk6.31286', 'vk6.31678', 'vk6.32441', 'vk6.32858', 'vk6.39506', 'vk6.41723', 'vk6.46109', 'vk6.47758', 'vk6.52287', 'vk6.52551', 'vk6.53126', 'vk6.53438', 'vk6.57498', 'vk6.58678', 'vk6.62183', 'vk6.63135', 'vk6.63798', 'vk6.63928', 'vk6.64240', 'vk6.64440', 'vk6.67016', 'vk6.67888', 'vk6.69641', 'vk6.70324']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U3U2O6U1U6U5U4
R3 orbit {'O1O2O3O4O5U3U2O6U1U6U5U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U2U1U6U5O6U4U3
Gauss code of K* O1O2O3O4U1U5U6U4U3O6O5U2
Gauss code of -K* O1O2O3O4U3O5O6U2U1U6U5U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 -2 3 3 1],[ 3 0 0 0 5 4 1],[ 2 0 0 0 3 2 0],[ 2 0 0 0 2 1 0],[-3 -5 -3 -2 0 0 0],[-3 -4 -2 -1 0 0 0],[-1 -1 0 0 0 0 0]]
Primitive based matrix [[ 0 3 3 1 -2 -2 -3],[-3 0 0 0 -1 -2 -4],[-3 0 0 0 -2 -3 -5],[-1 0 0 0 0 0 -1],[ 2 1 2 0 0 0 0],[ 2 2 3 0 0 0 0],[ 3 4 5 1 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-3,-1,2,2,3,0,0,1,2,4,0,2,3,5,0,0,1,0,0,0]
Phi over symmetry [-3,-3,-1,2,2,3,0,0,1,2,4,0,2,3,5,0,0,1,0,0,0]
Phi of -K [-3,-2,-2,1,3,3,1,1,3,1,2,0,3,2,3,3,3,4,2,2,0]
Phi of K* [-3,-3,-1,2,2,3,0,2,2,3,1,2,3,4,2,3,3,3,0,1,1]
Phi of -K* [-3,-2,-2,1,3,3,0,0,1,4,5,0,0,1,2,0,2,3,0,0,0]
Symmetry type of based matrix c
u-polynomial -t^3+2t^2-t
Normalized Jones-Krushkal polynomial 6z^2+19z+15
Enhanced Jones-Krushkal polynomial -4w^4z^2+10w^3z^2-4w^3z+23w^2z+15w
Inner characteristic polynomial t^6+60t^4+32t^2+1
Outer characteristic polynomial t^7+96t^5+144t^3+12t
Flat arrow polynomial -2*K1*K2 + K1 + K3 + 1
2-strand cable arrow polynomial 512*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 2912*K1**2*K2**2 - 608*K1**2*K2*K4 + 3400*K1**2*K2 - 128*K1**2*K4**2 - 3232*K1**2 + 640*K1*K2**3*K3 - 832*K1*K2**2*K3 - 544*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 4072*K1*K2*K3 + 864*K1*K3*K4 + 248*K1*K4*K5 - 128*K2**6 + 320*K2**4*K4 - 1664*K2**4 - 96*K2**3*K6 - 608*K2**2*K3**2 - 328*K2**2*K4**2 + 2264*K2**2*K4 - 2566*K2**2 - 32*K2*K3**2*K4 + 776*K2*K3*K5 + 336*K2*K4*K6 + 40*K3**2*K6 - 1432*K3**2 - 900*K4**2 - 256*K5**2 - 106*K6**2 + 2866
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact