Min(phi) over symmetries of the knot is: [-3,-2,1,1,1,2,0,1,2,3,3,1,1,2,2,-1,-1,-1,0,1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.342'] |
Arrow polynomial of the knot is: -4*K1**2 - 2*K1*K2 + K1 + 2*K2 + K3 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.136', '6.207', '6.342', '6.370', '6.376', '6.442', '6.456', '6.539', '6.631', '6.636', '6.674', '6.679', '6.705', '6.740', '6.760', '6.794', '6.795', '6.1369'] |
Outer characteristic polynomial of the knot is: t^7+58t^5+41t^3 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.342'] |
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 160*K1**4*K2 - 480*K1**4 + 32*K1**3*K2*K3 - 272*K1**2*K2**2 + 600*K1**2*K2 - 128*K1**2*K3**2 - 48*K1**2*K4**2 - 220*K1**2 + 384*K1*K2*K3 + 168*K1*K3*K4 + 40*K1*K4*K5 - 16*K2**4 - 16*K2**2*K3**2 - 8*K2**2*K4**2 + 32*K2**2*K4 - 294*K2**2 + 24*K2*K3*K5 + 8*K2*K4*K6 - 164*K3**2 - 64*K4**2 - 16*K5**2 - 2*K6**2 + 342 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.342'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11246', 'vk6.11324', 'vk6.12507', 'vk6.12618', 'vk6.13878', 'vk6.13973', 'vk6.14140', 'vk6.14365', 'vk6.14949', 'vk6.15070', 'vk6.15596', 'vk6.16068', 'vk6.16359', 'vk6.16400', 'vk6.17440', 'vk6.22591', 'vk6.22622', 'vk6.22763', 'vk6.23948', 'vk6.24089', 'vk6.24181', 'vk6.25976', 'vk6.26144', 'vk6.26366', 'vk6.28318', 'vk6.30928', 'vk6.31051', 'vk6.31224', 'vk6.31573', 'vk6.33689', 'vk6.34644', 'vk6.34712', 'vk6.34732', 'vk6.35562', 'vk6.36011', 'vk6.36244', 'vk6.37649', 'vk6.38080', 'vk6.39942', 'vk6.40129', 'vk6.42275', 'vk6.44549', 'vk6.44566', 'vk6.44797', 'vk6.52012', 'vk6.54393', 'vk6.56535', 'vk6.59049', 'vk6.59147', 'vk6.64561'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U3U1O6U5U6U4U2 |
R3 orbit | {'O1O2O3O4O5U3U1U4O6U5U6U2', 'O1O2O3O4U5U1O6U4U6U3O5U2', 'O1O2O3O4O5U3U1O6U5U6U4U2', 'O1O2O3O4U5U1U3O6U4U6O5U2'} |
R3 orbit length | 4 |
Gauss code of -K | O1O2O3O4O5U4U2U6U1O6U5U3 |
Gauss code of K* | O1O2O3O4U5U4U6U3U1O6O5U2 |
Gauss code of -K* | O1O2O3O4U3O5O6U4U2U6U1U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 1 -2 2 1 1],[ 3 0 3 0 3 2 1],[-1 -3 0 -2 1 0 1],[ 2 0 2 0 2 1 1],[-2 -3 -1 -2 0 -1 1],[-1 -2 0 -1 1 0 1],[-1 -1 -1 -1 -1 -1 0]] |
Primitive based matrix | [[ 0 2 1 1 1 -2 -3],[-2 0 1 -1 -1 -2 -3],[-1 -1 0 -1 -1 -1 -1],[-1 1 1 0 0 -1 -2],[-1 1 1 0 0 -2 -3],[ 2 2 1 1 2 0 0],[ 3 3 1 2 3 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,-1,-1,2,3,-1,1,1,2,3,1,1,1,1,0,1,2,2,3,0] |
Phi over symmetry | [-3,-2,1,1,1,2,0,1,2,3,3,1,1,2,2,-1,-1,-1,0,1,1] |
Phi of -K | [-3,-2,1,1,1,2,1,1,2,3,2,1,2,2,2,0,-1,0,-1,0,2] |
Phi of K* | [-2,-1,-1,-1,2,3,0,0,2,2,2,0,1,1,1,1,2,2,2,3,1] |
Phi of -K* | [-3,-2,1,1,1,2,0,1,2,3,3,1,1,2,2,-1,-1,-1,0,1,1] |
Symmetry type of based matrix | c |
u-polynomial | t^3-3t |
Normalized Jones-Krushkal polynomial | 6z+13 |
Enhanced Jones-Krushkal polynomial | 6w^2z+13w |
Inner characteristic polynomial | t^6+38t^4+11t^2 |
Outer characteristic polynomial | t^7+58t^5+41t^3 |
Flat arrow polynomial | -4*K1**2 - 2*K1*K2 + K1 + 2*K2 + K3 + 3 |
2-strand cable arrow polynomial | -64*K1**6 + 160*K1**4*K2 - 480*K1**4 + 32*K1**3*K2*K3 - 272*K1**2*K2**2 + 600*K1**2*K2 - 128*K1**2*K3**2 - 48*K1**2*K4**2 - 220*K1**2 + 384*K1*K2*K3 + 168*K1*K3*K4 + 40*K1*K4*K5 - 16*K2**4 - 16*K2**2*K3**2 - 8*K2**2*K4**2 + 32*K2**2*K4 - 294*K2**2 + 24*K2*K3*K5 + 8*K2*K4*K6 - 164*K3**2 - 64*K4**2 - 16*K5**2 - 2*K6**2 + 342 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}]] |
If K is slice | False |