Gauss code |
O1O2O3O4O5U2U5O6U4U6U1U3 |
R3 orbit |
{'O1O2O3O4O5U2U5O6U4U6U1U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U3U5U6U2O6U1U4 |
Gauss code of K* |
O1O2O3O4U3U5U4U1U6O5O6U2 |
Gauss code of -K* |
O1O2O3O4U3O5O6U5U4U1U6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -3 2 0 1 1],[ 1 0 -2 2 0 1 1],[ 3 2 0 3 2 1 1],[-2 -2 -3 0 -1 0 1],[ 0 0 -2 1 0 0 1],[-1 -1 -1 0 0 0 0],[-1 -1 -1 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 2 1 0 -3],[-2 0 1 -1 -3],[-1 -1 0 -1 -1],[ 0 1 1 0 -2],[ 3 3 1 2 0]] |
If based matrix primitive |
False |
Phi of primitive based matrix |
[-2,-1,0,3,-1,1,3,1,1,2] |
Phi over symmetry |
[-3,0,1,2,1,3,2,0,1,2] |
Phi of -K |
[-3,0,1,2,1,3,2,0,1,2] |
Phi of K* |
[-2,-1,0,3,2,1,2,0,3,1] |
Phi of -K* |
[-3,0,1,2,2,1,3,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
2z^2+23z+39 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+23w^2z+39w |
Inner characteristic polynomial |
t^4+17t^2 |
Outer characteristic polynomial |
t^5+31t^3+7t |
Flat arrow polynomial |
-10*K1**2 - 6*K1*K2 + 3*K1 + 5*K2 + 3*K3 + 6 |
2-strand cable arrow polynomial |
-832*K1**6 - 576*K1**4*K2**2 + 1952*K1**4*K2 - 4816*K1**4 + 800*K1**3*K2*K3 - 544*K1**3*K3 - 4912*K1**2*K2**2 - 288*K1**2*K2*K4 + 8752*K1**2*K2 - 1872*K1**2*K3**2 - 64*K1**2*K3*K5 - 464*K1**2*K4**2 - 4300*K1**2 - 416*K1*K2**2*K3 - 96*K1*K2**2*K5 - 416*K1*K2*K3*K4 + 7408*K1*K2*K3 - 160*K1*K2*K4*K5 - 32*K1*K3**2*K5 + 2784*K1*K3*K4 + 832*K1*K4*K5 + 128*K1*K5*K6 - 552*K2**4 - 560*K2**2*K3**2 - 216*K2**2*K4**2 + 1384*K2**2*K4 - 4778*K2**2 + 1168*K2*K3*K5 + 328*K2*K4*K6 + 64*K3**2*K6 - 2924*K3**2 - 1406*K4**2 - 616*K5**2 - 158*K6**2 + 5396 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {1, 5}, {4}, {2, 3}]] |
If K is slice |
False |