Gauss code |
O1O2O3O4O5O6U1U4U3U6U5U2 |
R3 orbit |
{'O1O2O3O4O5O6U1U4U3U6U5U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U5U2U1U4U3U6 |
Gauss code of K* |
O1O2O3O4O5O6U1U6U3U2U5U4 |
Gauss code of -K* |
O1O2O3O4O5O6U3U2U5U4U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 1 -1 -1 3 3],[ 5 0 5 2 1 4 3],[-1 -5 0 -2 -2 2 2],[ 1 -2 2 0 0 3 2],[ 1 -1 2 0 0 2 1],[-3 -4 -2 -3 -2 0 0],[-3 -3 -2 -2 -1 0 0]] |
Primitive based matrix |
[[ 0 3 3 1 -1 -1 -5],[-3 0 0 -2 -1 -2 -3],[-3 0 0 -2 -2 -3 -4],[-1 2 2 0 -2 -2 -5],[ 1 1 2 2 0 0 -1],[ 1 2 3 2 0 0 -2],[ 5 3 4 5 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-3,-1,1,1,5,0,2,1,2,3,2,2,3,4,2,2,5,0,1,2] |
Phi over symmetry |
[-5,-1,-1,1,3,3,1,2,5,3,4,0,2,1,2,2,2,3,2,2,0] |
Phi of -K |
[-5,-1,-1,1,3,3,2,3,1,4,5,0,0,1,2,0,2,3,0,0,0] |
Phi of K* |
[-3,-3,-1,1,1,5,0,0,1,2,4,0,2,3,5,0,0,1,0,2,3] |
Phi of -K* |
[-5,-1,-1,1,3,3,1,2,5,3,4,0,2,1,2,2,2,3,2,2,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^5-2t^3+t |
Normalized Jones-Krushkal polynomial |
7z^2+24z+21 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+9w^3z^2-2w^3z+26w^2z+21w |
Inner characteristic polynomial |
t^6+89t^4+49t^2+1 |
Outer characteristic polynomial |
t^7+135t^5+163t^3+9t |
Flat arrow polynomial |
K1 - 2*K2*K3 + K5 + 1 |
2-strand cable arrow polynomial |
192*K1**2*K2**2*K4 - 704*K1**2*K2**2 - 480*K1**2*K2*K4 + 2112*K1**2*K2 - 128*K1**2*K3**2 - 352*K1**2*K4**2 - 3464*K1**2 - 320*K1*K2**2*K3 - 64*K1*K2**2*K5 - 352*K1*K2*K3*K4 + 2976*K1*K2*K3 - 32*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 1976*K1*K3*K4 + 664*K1*K4*K5 + 24*K1*K5*K6 + 72*K1*K6*K7 - 2*K10**2 + 8*K10*K4*K6 - 128*K2**4 - 128*K2**2*K3**2 - 96*K2**2*K4**2 + 1200*K2**2*K4 - 3010*K2**2 - 192*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 488*K2*K3*K5 - 32*K2*K4**2*K6 + 512*K2*K4*K6 + 48*K2*K5*K7 + 16*K2*K6*K8 - 128*K3**4 + 328*K3**2*K6 - 2088*K3**2 + 88*K3*K4*K7 + 8*K3*K5*K8 - 8*K4**2*K6**2 + 24*K4**2*K8 - 1612*K4**2 - 392*K5**2 - 348*K6**2 - 88*K7**2 - 16*K8**2 + 3490 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |