Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.325

Min(phi) over symmetries of the knot is: [-3,-3,0,1,2,3,-1,1,3,4,3,1,3,3,2,1,1,1,1,2,1]
Flat knots (up to 7 crossings) with same phi are :['6.325']
Arrow polynomial of the knot is: -2*K1**2 - 6*K1*K2 + 3*K1 - 4*K2**2 + K2 + 3*K3 + 2*K4 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.325', '6.928']
Outer characteristic polynomial of the knot is: t^7+78t^5+51t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.325']
2-strand cable arrow polynomial of the knot is: -1872*K1**4 + 1120*K1**3*K2*K3 + 32*K1**3*K3*K4 - 608*K1**3*K3 - 1616*K1**2*K2**2 - 1216*K1**2*K2*K4 + 3944*K1**2*K2 - 2416*K1**2*K3**2 - 32*K1**2*K3*K5 - 656*K1**2*K4**2 - 4176*K1**2 + 96*K1*K2**3*K3 - 352*K1*K2**2*K3 + 224*K1*K2*K3**3 + 96*K1*K2*K3*K4**2 - 192*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 6112*K1*K2*K3 - 64*K1*K2*K4*K7 + 4528*K1*K3*K4 + 736*K1*K4*K5 + 8*K1*K5*K6 - 72*K2**4 - 384*K2**2*K3**2 - 120*K2**2*K4**2 + 768*K2**2*K4 - 3122*K2**2 - 160*K2*K3**2*K4 + 320*K2*K3*K5 + 168*K2*K4*K6 + 8*K2*K5*K7 - 288*K3**4 - 272*K3**2*K4**2 + 232*K3**2*K6 - 2976*K3**2 + 176*K3*K4*K7 - 48*K4**4 + 32*K4**2*K8 - 1706*K4**2 - 236*K5**2 - 62*K6**2 - 20*K7**2 - 4*K8**2 + 4164
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.325']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11012', 'vk6.11093', 'vk6.12178', 'vk6.12287', 'vk6.18204', 'vk6.18539', 'vk6.24662', 'vk6.25086', 'vk6.30577', 'vk6.30674', 'vk6.31847', 'vk6.31896', 'vk6.36792', 'vk6.37244', 'vk6.44033', 'vk6.44373', 'vk6.51811', 'vk6.51880', 'vk6.52675', 'vk6.52771', 'vk6.56010', 'vk6.56283', 'vk6.60549', 'vk6.60889', 'vk6.63491', 'vk6.63537', 'vk6.63969', 'vk6.64015', 'vk6.65669', 'vk6.65953', 'vk6.68715', 'vk6.68923']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U2U5O6U1U3U6U4
R3 orbit {'O1O2O3O4O5U2U5O6U1U3U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U2U6U3U5O6U1U4
Gauss code of K* O1O2O3O4U1U5U2U4U6O5O6U3
Gauss code of -K* O1O2O3O4U2O5O6U5U1U3U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -3 0 3 1 2],[ 3 0 -1 2 4 1 2],[ 3 1 0 2 3 1 1],[ 0 -2 -2 0 2 0 1],[-3 -4 -3 -2 0 0 0],[-1 -1 -1 0 0 0 0],[-2 -2 -1 -1 0 0 0]]
Primitive based matrix [[ 0 3 2 1 0 -3 -3],[-3 0 0 0 -2 -3 -4],[-2 0 0 0 -1 -1 -2],[-1 0 0 0 0 -1 -1],[ 0 2 1 0 0 -2 -2],[ 3 3 1 1 2 0 1],[ 3 4 2 1 2 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,-1,0,3,3,0,0,2,3,4,0,1,1,2,0,1,1,2,2,-1]
Phi over symmetry [-3,-3,0,1,2,3,-1,1,3,4,3,1,3,3,2,1,1,1,1,2,1]
Phi of -K [-3,-3,0,1,2,3,-1,1,3,4,3,1,3,3,2,1,1,1,1,2,1]
Phi of K* [-3,-2,-1,0,3,3,1,2,1,2,3,1,1,3,4,1,3,3,1,1,-1]
Phi of -K* [-3,-3,0,1,2,3,-1,2,1,2,4,2,1,1,3,0,1,2,0,0,0]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+46t^4+18t^2+1
Outer characteristic polynomial t^7+78t^5+51t^3+8t
Flat arrow polynomial -2*K1**2 - 6*K1*K2 + 3*K1 - 4*K2**2 + K2 + 3*K3 + 2*K4 + 4
2-strand cable arrow polynomial -1872*K1**4 + 1120*K1**3*K2*K3 + 32*K1**3*K3*K4 - 608*K1**3*K3 - 1616*K1**2*K2**2 - 1216*K1**2*K2*K4 + 3944*K1**2*K2 - 2416*K1**2*K3**2 - 32*K1**2*K3*K5 - 656*K1**2*K4**2 - 4176*K1**2 + 96*K1*K2**3*K3 - 352*K1*K2**2*K3 + 224*K1*K2*K3**3 + 96*K1*K2*K3*K4**2 - 192*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 6112*K1*K2*K3 - 64*K1*K2*K4*K7 + 4528*K1*K3*K4 + 736*K1*K4*K5 + 8*K1*K5*K6 - 72*K2**4 - 384*K2**2*K3**2 - 120*K2**2*K4**2 + 768*K2**2*K4 - 3122*K2**2 - 160*K2*K3**2*K4 + 320*K2*K3*K5 + 168*K2*K4*K6 + 8*K2*K5*K7 - 288*K3**4 - 272*K3**2*K4**2 + 232*K3**2*K6 - 2976*K3**2 + 176*K3*K4*K7 - 48*K4**4 + 32*K4**2*K8 - 1706*K4**2 - 236*K5**2 - 62*K6**2 - 20*K7**2 - 4*K8**2 + 4164
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]]
If K is slice False
Contact