Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.315

Min(phi) over symmetries of the knot is: [-3,-1,-1,1,1,3,-1,1,2,3,3,1,1,1,1,1,1,2,0,1,2]
Flat knots (up to 7 crossings) with same phi are :['6.315']
Arrow polynomial of the knot is: 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.315', '6.337', '6.389', '6.418', '6.599', '6.675', '6.686', '6.688', '6.746', '6.747', '6.809', '6.1034', '6.1128', '6.1133', '6.1334', '6.1363', '6.1489', '6.1539', '6.1564', '6.1821', '6.1863']
Outer characteristic polynomial of the knot is: t^7+61t^5+38t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.315']
2-strand cable arrow polynomial of the knot is: -128*K1**6 - 1408*K1**4*K2**2 + 3200*K1**4*K2 - 4704*K1**4 - 384*K1**3*K2**2*K3 + 896*K1**3*K2*K3 - 736*K1**3*K3 - 320*K1**2*K2**4 + 2752*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 10608*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 768*K1**2*K2*K4 + 10688*K1**2*K2 - 256*K1**2*K3**2 - 144*K1**2*K4**2 - 4720*K1**2 + 1248*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 672*K1*K2**2*K3 - 96*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 7016*K1*K2*K3 + 840*K1*K3*K4 + 144*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 1616*K2**4 - 528*K2**2*K3**2 - 48*K2**2*K4**2 + 872*K2**2*K4 - 2990*K2**2 + 120*K2*K3*K5 + 8*K2*K4*K6 - 1468*K3**2 - 432*K4**2 - 60*K5**2 - 2*K6**2 + 4206
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.315']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10915', 'vk6.10924', 'vk6.10928', 'vk6.12075', 'vk6.12079', 'vk6.12090', 'vk6.12094', 'vk6.14497', 'vk6.14498', 'vk6.15719', 'vk6.15720', 'vk6.16151', 'vk6.16152', 'vk6.30513', 'vk6.30517', 'vk6.30541', 'vk6.30545', 'vk6.31793', 'vk6.34073', 'vk6.34176', 'vk6.34177', 'vk6.34510', 'vk6.51750', 'vk6.51754', 'vk6.52624', 'vk6.54145', 'vk6.54146', 'vk6.54337', 'vk6.54541', 'vk6.63466', 'vk6.63475', 'vk6.63479']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U2U3O6U5U6U1U4
R3 orbit {'O1O2O3O4O5U2U3O6U5U6U1U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U2U5U6U1O6U3U4
Gauss code of K* O1O2O3O4U3U5U6U4U1O5O6U2
Gauss code of -K* O1O2O3O4U3O5O6U4U1U5U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -3 -1 3 1 1],[ 1 0 -2 0 3 1 1],[ 3 2 0 1 3 2 1],[ 1 0 -1 0 2 1 1],[-3 -3 -3 -2 0 -1 1],[-1 -1 -2 -1 1 0 1],[-1 -1 -1 -1 -1 -1 0]]
Primitive based matrix [[ 0 3 1 1 -1 -1 -3],[-3 0 1 -1 -2 -3 -3],[-1 -1 0 -1 -1 -1 -1],[-1 1 1 0 -1 -1 -2],[ 1 2 1 1 0 0 -1],[ 1 3 1 1 0 0 -2],[ 3 3 1 2 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,-1,1,1,3,-1,1,2,3,3,1,1,1,1,1,1,2,0,1,2]
Phi over symmetry [-3,-1,-1,1,1,3,-1,1,2,3,3,1,1,1,1,1,1,2,0,1,2]
Phi of -K [-3,-1,-1,1,1,3,0,1,2,3,3,0,1,1,1,1,1,2,-1,1,3]
Phi of K* [-3,-1,-1,1,1,3,1,3,1,2,3,1,1,1,2,1,1,3,0,0,1]
Phi of -K* [-3,-1,-1,1,1,3,1,2,1,2,3,0,1,1,2,1,1,3,-1,-1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 6z^2+27z+31
Enhanced Jones-Krushkal polynomial 6w^3z^2+27w^2z+31w
Inner characteristic polynomial t^6+39t^4+12t^2
Outer characteristic polynomial t^7+61t^5+38t^3+4t
Flat arrow polynomial 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial -128*K1**6 - 1408*K1**4*K2**2 + 3200*K1**4*K2 - 4704*K1**4 - 384*K1**3*K2**2*K3 + 896*K1**3*K2*K3 - 736*K1**3*K3 - 320*K1**2*K2**4 + 2752*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 10608*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 768*K1**2*K2*K4 + 10688*K1**2*K2 - 256*K1**2*K3**2 - 144*K1**2*K4**2 - 4720*K1**2 + 1248*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 672*K1*K2**2*K3 - 96*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 7016*K1*K2*K3 + 840*K1*K3*K4 + 144*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 1616*K2**4 - 528*K2**2*K3**2 - 48*K2**2*K4**2 + 872*K2**2*K4 - 2990*K2**2 + 120*K2*K3*K5 + 8*K2*K4*K6 - 1468*K3**2 - 432*K4**2 - 60*K5**2 - 2*K6**2 + 4206
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}]]
If K is slice False
Contact