Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.314

Min(phi) over symmetries of the knot is: [-3,-1,-1,1,1,3,-1,1,1,2,4,1,0,0,1,0,1,2,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.314']
Arrow polynomial of the knot is: -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.65', '6.137', '6.201', '6.203', '6.214', '6.310', '6.314', '6.332', '6.385', '6.386', '6.401', '6.516', '6.564', '6.571', '6.572', '6.578', '6.621', '6.626', '6.716', '6.773', '6.807', '6.814', '6.821', '6.940', '6.966', '6.1036', '6.1071', '6.1108', '6.1111', '6.1131', '6.1188', '6.1203', '6.1206', '6.1220', '6.1340', '6.1387', '6.1548', '6.1663', '6.1680', '6.1693', '6.1831', '6.1932']
Outer characteristic polynomial of the knot is: t^7+81t^5+54t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.314']
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 224*K1**4*K2 - 768*K1**4 + 448*K1**3*K2*K3 - 384*K1**3*K3 - 1024*K1**2*K2**4 + 1792*K1**2*K2**3 - 5184*K1**2*K2**2 - 192*K1**2*K2*K4 + 5016*K1**2*K2 - 704*K1**2*K3**2 - 32*K1**2*K3*K5 - 3456*K1**2 + 1536*K1*K2**3*K3 - 1120*K1*K2**2*K3 - 128*K1*K2**2*K5 + 64*K1*K2*K3**3 - 96*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 5624*K1*K2*K3 + 784*K1*K3*K4 + 32*K1*K4*K5 - 1680*K2**4 - 896*K2**2*K3**2 - 16*K2**2*K4**2 + 1088*K2**2*K4 - 1844*K2**2 + 432*K2*K3*K5 + 16*K2*K4*K6 - 32*K3**4 + 16*K3**2*K6 - 1592*K3**2 - 284*K4**2 - 72*K5**2 - 4*K6**2 + 2722
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.314']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11509', 'vk6.11832', 'vk6.12847', 'vk6.13164', 'vk6.20275', 'vk6.21600', 'vk6.27543', 'vk6.29111', 'vk6.31274', 'vk6.31648', 'vk6.32420', 'vk6.32845', 'vk6.38946', 'vk6.41181', 'vk6.45715', 'vk6.47420', 'vk6.52272', 'vk6.52527', 'vk6.53101', 'vk6.53427', 'vk6.57108', 'vk6.58286', 'vk6.61691', 'vk6.62844', 'vk6.63791', 'vk6.63913', 'vk6.64227', 'vk6.64433', 'vk6.66739', 'vk6.67615', 'vk6.69391', 'vk6.70121']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U2U3O6U5U4U1U6
R3 orbit {'O1O2O3O4O5U2U3O6U5U4U1U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U6U5U2U1O6U3U4
Gauss code of K* O1O2O3O4U3U5U6U2U1O5O6U4
Gauss code of -K* O1O2O3O4U1O5O6U4U3U5U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -3 -1 1 1 3],[ 1 0 -3 -1 2 2 3],[ 3 3 0 1 3 2 2],[ 1 1 -1 0 2 1 2],[-1 -2 -3 -2 0 0 2],[-1 -2 -2 -1 0 0 1],[-3 -3 -2 -2 -2 -1 0]]
Primitive based matrix [[ 0 3 1 1 -1 -1 -3],[-3 0 -1 -2 -2 -3 -2],[-1 1 0 0 -1 -2 -2],[-1 2 0 0 -2 -2 -3],[ 1 2 1 2 0 1 -1],[ 1 3 2 2 -1 0 -3],[ 3 2 2 3 1 3 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,-1,1,1,3,1,2,2,3,2,0,1,2,2,2,2,3,-1,1,3]
Phi over symmetry [-3,-1,-1,1,1,3,-1,1,1,2,4,1,0,0,1,0,1,2,0,0,1]
Phi of -K [-3,-1,-1,1,1,3,-1,1,1,2,4,1,0,0,1,0,1,2,0,0,1]
Phi of K* [-3,-1,-1,1,1,3,0,1,1,2,4,0,0,0,1,0,1,2,-1,-1,1]
Phi of -K* [-3,-1,-1,1,1,3,1,3,2,3,2,1,1,2,2,2,2,3,0,1,2]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 6z^2+23z+23
Enhanced Jones-Krushkal polynomial -2w^4z^2+8w^3z^2-2w^3z+25w^2z+23w
Inner characteristic polynomial t^6+59t^4+24t^2
Outer characteristic polynomial t^7+81t^5+54t^3+8t
Flat arrow polynomial -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
2-strand cable arrow polynomial -256*K1**4*K2**2 + 224*K1**4*K2 - 768*K1**4 + 448*K1**3*K2*K3 - 384*K1**3*K3 - 1024*K1**2*K2**4 + 1792*K1**2*K2**3 - 5184*K1**2*K2**2 - 192*K1**2*K2*K4 + 5016*K1**2*K2 - 704*K1**2*K3**2 - 32*K1**2*K3*K5 - 3456*K1**2 + 1536*K1*K2**3*K3 - 1120*K1*K2**2*K3 - 128*K1*K2**2*K5 + 64*K1*K2*K3**3 - 96*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 5624*K1*K2*K3 + 784*K1*K3*K4 + 32*K1*K4*K5 - 1680*K2**4 - 896*K2**2*K3**2 - 16*K2**2*K4**2 + 1088*K2**2*K4 - 1844*K2**2 + 432*K2*K3*K5 + 16*K2*K4*K6 - 32*K3**4 + 16*K3**2*K6 - 1592*K3**2 - 284*K4**2 - 72*K5**2 - 4*K6**2 + 2722
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact