Gauss code |
O1O2O3O4O5U2U1O6U4U3U6U5 |
R3 orbit |
{'O1O2O3O4O5U2U1O6U4U3U6U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U1U6U3U2O6U5U4 |
Gauss code of K* |
O1O2O3O4U5U6U2U1U4O6O5U3 |
Gauss code of -K* |
O1O2O3O4U2O5O6U1U4U3U6U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -3 0 0 4 2],[ 3 0 0 3 2 4 2],[ 3 0 0 2 1 3 2],[ 0 -3 -2 0 0 3 2],[ 0 -2 -1 0 0 2 1],[-4 -4 -3 -3 -2 0 0],[-2 -2 -2 -2 -1 0 0]] |
Primitive based matrix |
[[ 0 4 2 0 0 -3 -3],[-4 0 0 -2 -3 -3 -4],[-2 0 0 -1 -2 -2 -2],[ 0 2 1 0 0 -1 -2],[ 0 3 2 0 0 -2 -3],[ 3 3 2 1 2 0 0],[ 3 4 2 2 3 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-2,0,0,3,3,0,2,3,3,4,1,2,2,2,0,1,2,2,3,0] |
Phi over symmetry |
[-4,-2,0,0,3,3,0,2,3,3,4,1,2,2,2,0,1,2,2,3,0] |
Phi of -K |
[-3,-3,0,0,2,4,0,0,1,3,3,1,2,3,4,0,0,1,1,2,2] |
Phi of K* |
[-4,-2,0,0,3,3,2,1,2,3,4,0,1,3,3,0,0,1,1,2,0] |
Phi of -K* |
[-3,-3,0,0,2,4,0,1,2,2,3,2,3,2,4,0,1,2,2,3,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^4+2t^3-t^2 |
Normalized Jones-Krushkal polynomial |
9z^2+28z+21 |
Enhanced Jones-Krushkal polynomial |
9w^3z^2+28w^2z+21w |
Inner characteristic polynomial |
t^6+69t^4+26t^2+1 |
Outer characteristic polynomial |
t^7+107t^5+85t^3+6t |
Flat arrow polynomial |
4*K1**2*K2 - 2*K1*K3 - K2 |
2-strand cable arrow polynomial |
768*K1**4*K2 - 1472*K1**4 + 768*K1**3*K2*K3 - 256*K1**3*K3 + 480*K1**2*K2**3 + 384*K1**2*K2**2*K4 - 4352*K1**2*K2**2 - 1152*K1**2*K2*K4 + 4392*K1**2*K2 - 576*K1**2*K3**2 - 416*K1**2*K4**2 - 2616*K1**2 + 192*K1*K2**2*K3*K4 - 832*K1*K2**2*K3 + 96*K1*K2**2*K4*K5 - 448*K1*K2**2*K5 - 416*K1*K2*K3*K4 + 4656*K1*K2*K3 - 128*K1*K2*K4*K5 + 1584*K1*K3*K4 + 672*K1*K4*K5 - 32*K2**4*K4**2 + 128*K2**4*K4 - 576*K2**4 + 32*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 - 192*K2**2*K3**2 - 336*K2**2*K4**2 + 1496*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 2512*K2**2 - 32*K2*K3**2*K4 + 552*K2*K3*K5 + 272*K2*K4*K6 - 1336*K3**2 - 938*K4**2 - 288*K5**2 - 48*K6**2 + 2584 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {4}, {3}, {1, 2}]] |
If K is slice |
False |