Min(phi) over symmetries of the knot is: [-4,-1,0,1,1,3,1,1,4,4,3,0,1,2,2,0,1,1,0,2,2] |
Flat knots (up to 7 crossings) with same phi are :['6.288'] |
Arrow polynomial of the knot is: 4*K1**3 + 4*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 2*K2**2 + 2*K2 + 2*K3 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.168', '6.222', '6.288'] |
Outer characteristic polynomial of the knot is: t^7+70t^5+65t^3+3t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.288'] |
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 512*K1**4*K2 - 1360*K1**4 + 192*K1**3*K2*K3 - 608*K1**3*K3 - 128*K1**2*K2**4 + 320*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 2032*K1**2*K2**2 + 192*K1**2*K2*K3**2 + 64*K1**2*K2*K4**2 - 192*K1**2*K2*K4 + 3624*K1**2*K2 - 624*K1**2*K3**2 - 144*K1**2*K4**2 - 2236*K1**2 + 224*K1*K2**3*K3 - 576*K1*K2**2*K3 - 96*K1*K2**2*K5 + 64*K1*K2*K3**3 + 32*K1*K2*K3*K4**2 - 448*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 3320*K1*K2*K3 - 64*K1*K3**2*K5 + 912*K1*K3*K4 + 152*K1*K4*K5 + 16*K1*K5*K6 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 128*K2**4*K4 - 416*K2**4 + 32*K2**3*K3*K5 - 32*K2**3*K6 + 64*K2**2*K3**2*K4 - 336*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 152*K2**2*K4**2 + 728*K2**2*K4 - 1900*K2**2 + 448*K2*K3*K5 + 64*K2*K4*K6 - 64*K3**4 - 48*K3**2*K4**2 + 80*K3**2*K6 - 1108*K3**2 + 16*K3*K4*K7 - 8*K4**4 - 372*K4**2 - 104*K5**2 - 20*K6**2 + 2010 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.288'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13866', 'vk6.13961', 'vk6.14139', 'vk6.14362', 'vk6.14937', 'vk6.15060', 'vk6.15591', 'vk6.16061', 'vk6.16289', 'vk6.16314', 'vk6.16355', 'vk6.16397', 'vk6.17439', 'vk6.22600', 'vk6.22633', 'vk6.22774', 'vk6.23951', 'vk6.25974', 'vk6.26364', 'vk6.33685', 'vk6.34145', 'vk6.34646', 'vk6.34719', 'vk6.34737', 'vk6.36212', 'vk6.36243', 'vk6.38071', 'vk6.38091', 'vk6.42278', 'vk6.44555', 'vk6.44577', 'vk6.53856', 'vk6.54397', 'vk6.54614', 'vk6.55580', 'vk6.56529', 'vk6.56538', 'vk6.59044', 'vk6.59142', 'vk6.64568'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U1U5O6U3U6U2U4 |
R3 orbit | {'O1O2O3O4O5U1U5U2O6U3U6U4', 'O1O2O3O4O5U1U5O6U3U6U2U4'} |
R3 orbit length | 2 |
Gauss code of -K | O1O2O3O4O5U2U4U6U3O6U1U5 |
Gauss code of K* | O1O2O3O4U5U3U1U4U6O5O6U2 |
Gauss code of -K* | O1O2O3O4U3O5O6U5U1U4U2U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -4 0 -1 3 1 1],[ 4 0 3 2 4 1 1],[ 0 -3 0 -1 2 0 1],[ 1 -2 1 0 2 0 1],[-3 -4 -2 -2 0 0 0],[-1 -1 0 0 0 0 0],[-1 -1 -1 -1 0 0 0]] |
Primitive based matrix | [[ 0 3 1 1 0 -1 -4],[-3 0 0 0 -2 -2 -4],[-1 0 0 0 0 0 -1],[-1 0 0 0 -1 -1 -1],[ 0 2 0 1 0 -1 -3],[ 1 2 0 1 1 0 -2],[ 4 4 1 1 3 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-1,-1,0,1,4,0,0,2,2,4,0,0,0,1,1,1,1,1,3,2] |
Phi over symmetry | [-4,-1,0,1,1,3,1,1,4,4,3,0,1,2,2,0,1,1,0,2,2] |
Phi of -K | [-4,-1,0,1,1,3,1,1,4,4,3,0,1,2,2,0,1,1,0,2,2] |
Phi of K* | [-3,-1,-1,0,1,4,2,2,1,2,3,0,0,1,4,1,2,4,0,1,1] |
Phi of -K* | [-4,-1,0,1,1,3,2,3,1,1,4,1,0,1,2,0,1,2,0,0,0] |
Symmetry type of based matrix | c |
u-polynomial | t^4-t^3-t |
Normalized Jones-Krushkal polynomial | 2z^2+15z+23 |
Enhanced Jones-Krushkal polynomial | 2w^3z^2+15w^2z+23w |
Inner characteristic polynomial | t^6+42t^4+23t^2 |
Outer characteristic polynomial | t^7+70t^5+65t^3+3t |
Flat arrow polynomial | 4*K1**3 + 4*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 2*K2**2 + 2*K2 + 2*K3 + 5 |
2-strand cable arrow polynomial | -64*K1**6 + 512*K1**4*K2 - 1360*K1**4 + 192*K1**3*K2*K3 - 608*K1**3*K3 - 128*K1**2*K2**4 + 320*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 2032*K1**2*K2**2 + 192*K1**2*K2*K3**2 + 64*K1**2*K2*K4**2 - 192*K1**2*K2*K4 + 3624*K1**2*K2 - 624*K1**2*K3**2 - 144*K1**2*K4**2 - 2236*K1**2 + 224*K1*K2**3*K3 - 576*K1*K2**2*K3 - 96*K1*K2**2*K5 + 64*K1*K2*K3**3 + 32*K1*K2*K3*K4**2 - 448*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 3320*K1*K2*K3 - 64*K1*K3**2*K5 + 912*K1*K3*K4 + 152*K1*K4*K5 + 16*K1*K5*K6 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 128*K2**4*K4 - 416*K2**4 + 32*K2**3*K3*K5 - 32*K2**3*K6 + 64*K2**2*K3**2*K4 - 336*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 152*K2**2*K4**2 + 728*K2**2*K4 - 1900*K2**2 + 448*K2*K3*K5 + 64*K2*K4*K6 - 64*K3**4 - 48*K3**2*K4**2 + 80*K3**2*K6 - 1108*K3**2 + 16*K3*K4*K7 - 8*K4**4 - 372*K4**2 - 104*K5**2 - 20*K6**2 + 2010 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice | False |