Gauss code |
O1O2O3O4O5U1U5O6U2U6U3U4 |
R3 orbit |
{'O1O2O3O4O5U1U5O6U2U6U3U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U2U3U6U4O6U1U5 |
Gauss code of K* |
O1O2O3O4U5U1U3U4U6O5O6U2 |
Gauss code of -K* |
O1O2O3O4U3O5O6U5U1U2U4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -2 1 3 1 1],[ 4 0 2 3 4 1 1],[ 2 -2 0 2 3 0 1],[-1 -3 -2 0 1 0 0],[-3 -4 -3 -1 0 0 0],[-1 -1 0 0 0 0 0],[-1 -1 -1 0 0 0 0]] |
Primitive based matrix |
[[ 0 3 1 1 1 -2 -4],[-3 0 0 0 -1 -3 -4],[-1 0 0 0 0 0 -1],[-1 0 0 0 0 -1 -1],[-1 1 0 0 0 -2 -3],[ 2 3 0 1 2 0 -2],[ 4 4 1 1 3 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,-1,2,4,0,0,1,3,4,0,0,0,1,0,1,1,2,3,2] |
Phi over symmetry |
[-4,-2,1,1,1,3,0,2,4,4,3,1,2,3,2,0,0,1,0,2,2] |
Phi of -K |
[-4,-2,1,1,1,3,0,2,4,4,3,1,2,3,2,0,0,1,0,2,2] |
Phi of K* |
[-3,-1,-1,-1,2,4,1,2,2,2,3,0,0,1,2,0,2,4,3,4,0] |
Phi of -K* |
[-4,-2,1,1,1,3,2,1,1,3,4,0,1,2,3,0,0,0,0,0,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^3+t^2-3t |
Normalized Jones-Krushkal polynomial |
2z^2+15z+23 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+4w^3z^2-6w^3z+21w^2z+23w |
Inner characteristic polynomial |
t^6+46t^4+20t^2+1 |
Outer characteristic polynomial |
t^7+78t^5+69t^3+8t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 + 3*K2 + K3 + 4 |
2-strand cable arrow polynomial |
-128*K1**6 + 512*K1**4*K2**3 - 1152*K1**4*K2**2 + 1344*K1**4*K2 - 2048*K1**4 - 384*K1**3*K2**2*K3 + 800*K1**3*K2*K3 - 864*K1**3*K3 + 640*K1**2*K2**5 - 2240*K1**2*K2**4 + 256*K1**2*K2**3*K3**2 + 4288*K1**2*K2**3 - 384*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 7376*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 736*K1**2*K2*K4 + 7000*K1**2*K2 - 288*K1**2*K3**2 - 32*K1**2*K4**2 - 4308*K1**2 - 1024*K1*K2**4*K3 - 128*K1*K2**3*K3*K4 + 2752*K1*K2**3*K3 + 512*K1*K2**2*K3*K4 - 1120*K1*K2**2*K3 - 96*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 5768*K1*K2*K3 - 32*K1*K3**2*K5 + 808*K1*K3*K4 + 152*K1*K4*K5 + 24*K1*K5*K6 - 576*K2**6 - 320*K2**4*K3**2 - 32*K2**4*K4**2 + 672*K2**4*K4 - 2192*K2**4 + 224*K2**3*K3*K5 + 32*K2**3*K4*K6 - 1040*K2**2*K3**2 - 248*K2**2*K4**2 + 1168*K2**2*K4 - 48*K2**2*K5**2 - 8*K2**2*K6**2 - 1802*K2**2 - 32*K2*K3**2*K4 + 480*K2*K3*K5 + 56*K2*K4*K6 + 8*K2*K5*K7 + 32*K3**2*K6 - 1620*K3**2 - 506*K4**2 - 168*K5**2 - 30*K6**2 + 3464 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {3, 5}, {1, 2}]] |
If K is slice |
False |