Gauss code |
O1O2O3O4O5U1U5O6U2U4U6U3 |
R3 orbit |
{'O1O2O3O4O5U1U5O6U2U4U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U3U6U2U4O6U1U5 |
Gauss code of K* |
O1O2O3O4U5U1U4U2U6O5O6U3 |
Gauss code of -K* |
O1O2O3O4U2O5O6U5U3U1U4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -2 2 1 1 2],[ 4 0 2 4 3 1 2],[ 2 -2 0 3 1 0 2],[-2 -4 -3 0 -1 0 1],[-1 -3 -1 1 0 0 1],[-1 -1 0 0 0 0 0],[-2 -2 -2 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 2 2 1 1 -2 -4],[-2 0 1 0 -1 -3 -4],[-2 -1 0 0 -1 -2 -2],[-1 0 0 0 0 0 -1],[-1 1 1 0 0 -1 -3],[ 2 3 2 0 1 0 -2],[ 4 4 2 1 3 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,-1,2,4,-1,0,1,3,4,0,1,2,2,0,0,1,1,3,2] |
Phi over symmetry |
[-4,-2,1,1,2,2,0,2,4,2,4,2,3,1,2,0,0,0,1,1,-1] |
Phi of -K |
[-4,-2,1,1,2,2,0,2,4,2,4,2,3,1,2,0,0,0,1,1,-1] |
Phi of K* |
[-2,-2,-1,-1,2,4,-1,0,1,2,4,0,1,1,2,0,2,2,3,4,0] |
Phi of -K* |
[-4,-2,1,1,2,2,2,1,3,2,4,0,1,2,3,0,0,0,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^2-2t |
Normalized Jones-Krushkal polynomial |
13z+27 |
Enhanced Jones-Krushkal polynomial |
-4w^3z+17w^2z+27w |
Inner characteristic polynomial |
t^6+51t^4+31t^2 |
Outer characteristic polynomial |
t^7+81t^5+106t^3 |
Flat arrow polynomial |
4*K1**3 - 10*K1**2 - 8*K1*K2 + K1 - 2*K2**2 + 5*K2 + 3*K3 + K4 + 7 |
2-strand cable arrow polynomial |
-192*K1**4*K2**2 + 288*K1**4*K2 - 1296*K1**4 + 128*K1**3*K2**3*K3 + 416*K1**3*K2*K3 - 448*K1**2*K2**4 + 544*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 - 3424*K1**2*K2**2 + 4360*K1**2*K2 - 672*K1**2*K3**2 - 128*K1**2*K4**2 - 3568*K1**2 + 992*K1*K2**3*K3 + 192*K1*K2*K3**3 + 3872*K1*K2*K3 + 32*K1*K3**3*K4 + 1264*K1*K3*K4 + 288*K1*K4*K5 + 24*K1*K5*K6 + 16*K1*K6*K7 - 32*K2**6 + 64*K2**4*K4 - 1096*K2**4 - 1024*K2**2*K3**2 - 64*K2**2*K4**2 + 512*K2**2*K4 - 1926*K2**2 + 568*K2*K3*K5 + 48*K2*K4*K6 - 144*K3**4 - 96*K3**2*K4**2 + 120*K3**2*K6 - 1660*K3**2 + 88*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 722*K4**2 - 252*K5**2 - 74*K6**2 - 32*K7**2 - 2*K8**2 + 3290 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{4, 6}, {3, 5}, {1, 2}], [{6}, {2, 5}, {3, 4}, {1}]] |
If K is slice |
False |