Gauss code |
O1O2O3O4O5U1U5O6U2U3U4U6 |
R3 orbit |
{'O1O2O3O4O5U1U5O6U2U3U4U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U2U3U4O6U1U5 |
Gauss code of K* |
O1O2O3O4U5U1U2U3U6O5O6U4 |
Gauss code of -K* |
O1O2O3O4U1O5O6U5U2U3U4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -2 0 2 1 3],[ 4 0 2 3 4 1 3],[ 2 -2 0 1 2 0 3],[ 0 -3 -1 0 1 0 2],[-2 -4 -2 -1 0 0 1],[-1 -1 0 0 0 0 0],[-3 -3 -3 -2 -1 0 0]] |
Primitive based matrix |
[[ 0 3 2 1 0 -2 -4],[-3 0 -1 0 -2 -3 -3],[-2 1 0 0 -1 -2 -4],[-1 0 0 0 0 0 -1],[ 0 2 1 0 0 -1 -3],[ 2 3 2 0 1 0 -2],[ 4 3 4 1 3 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-1,0,2,4,1,0,2,3,3,0,1,2,4,0,0,1,1,3,2] |
Phi over symmetry |
[-4,-2,0,1,2,3,0,1,4,2,4,1,3,2,2,1,1,1,1,2,0] |
Phi of -K |
[-4,-2,0,1,2,3,0,1,4,2,4,1,3,2,2,1,1,1,1,2,0] |
Phi of K* |
[-3,-2,-1,0,2,4,0,2,1,2,4,1,1,2,2,1,3,4,1,1,0] |
Phi of -K* |
[-4,-2,0,1,2,3,2,3,1,4,3,1,0,2,3,0,1,2,0,0,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^3-t |
Normalized Jones-Krushkal polynomial |
5z+11 |
Enhanced Jones-Krushkal polynomial |
-6w^4z^2+6w^3z^2-10w^3z+15w^2z+11w |
Inner characteristic polynomial |
t^6+59t^4+44t^2 |
Outer characteristic polynomial |
t^7+93t^5+128t^3+6t |
Flat arrow polynomial |
-8*K1**4 + 4*K1**3 + 4*K1**2*K2 + 4*K1**2 - 2*K1*K2 - 2*K1 + 1 |
2-strand cable arrow polynomial |
-736*K1**4 - 192*K1**3*K3 - 768*K1**2*K2**6 + 1152*K1**2*K2**5 - 3264*K1**2*K2**4 - 512*K1**2*K2**3*K4 + 3232*K1**2*K2**3 - 3584*K1**2*K2**2 - 192*K1**2*K2*K4 + 3240*K1**2*K2 - 64*K1**2*K3**2 - 2128*K1**2 + 1408*K1*K2**5*K3 + 384*K1*K2**4*K3*K4 - 1024*K1*K2**4*K3 - 128*K1*K2**4*K5 + 2432*K1*K2**3*K3 - 256*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 2272*K1*K2*K3 + 216*K1*K3*K4 + 40*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 1312*K2**6 - 704*K2**4*K3**2 - 288*K2**4*K4**2 + 992*K2**4*K4 - 784*K2**4 + 64*K2**3*K3*K5 - 224*K2**2*K3**2 - 8*K2**2*K4**2 + 408*K2**2*K4 - 560*K2**2 + 72*K2*K3*K5 - 632*K3**2 - 156*K4**2 - 40*K5**2 + 1578 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{4, 6}, {2, 5}, {1, 3}]] |
If K is slice |
False |