Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.276

Min(phi) over symmetries of the knot is: [-4,0,0,0,1,3,0,1,3,3,4,0,1,0,0,1,0,1,0,2,1]
Flat knots (up to 7 crossings) with same phi are :['6.276']
Arrow polynomial of the knot is: -2*K1*K2 + K1 - 2*K2**2 + K3 + K4 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.95', '6.107', '6.276', '6.292', '6.394', '6.429', '6.463']
Outer characteristic polynomial of the knot is: t^7+85t^5+94t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.276']
2-strand cable arrow polynomial of the knot is: -64*K1**4 + 96*K1**3*K3*K4 - 320*K1**2*K2*K4 + 344*K1**2*K2 - 1168*K1**2*K3**2 - 64*K1**2*K3*K5 - 240*K1**2*K4**2 - 2264*K1**2 + 96*K1*K2*K3*K4**2 - 192*K1*K2*K3*K4 + 2648*K1*K2*K3 + 2984*K1*K3*K4 + 392*K1*K4*K5 - 72*K2**2*K4**2 + 432*K2**2*K4 - 1426*K2**2 - 160*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 176*K2*K3*K5 + 104*K2*K4*K6 + 8*K2*K5*K7 - 16*K3**4 - 96*K3**2*K4**2 + 88*K3**2*K6 - 2076*K3**2 + 80*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1344*K4**2 - 172*K5**2 - 46*K6**2 - 16*K7**2 - 2*K8**2 + 2352
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.276']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71630', 'vk6.71799', 'vk6.72219', 'vk6.72357', 'vk6.73401', 'vk6.73596', 'vk6.73875', 'vk6.74278', 'vk6.74903', 'vk6.75367', 'vk6.75678', 'vk6.75880', 'vk6.76454', 'vk6.77252', 'vk6.77342', 'vk6.77590', 'vk6.77690', 'vk6.78328', 'vk6.78872', 'vk6.79322', 'vk6.80113', 'vk6.80297', 'vk6.80424', 'vk6.80784', 'vk6.82016', 'vk6.82754', 'vk6.85353', 'vk6.86696', 'vk6.86931', 'vk6.87026', 'vk6.87590', 'vk6.89468']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U1U4O6U5U3U2U6
R3 orbit {'O1O2O3O4O5U1U4O6U5U3U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U6U4U3U1O6U2U5
Gauss code of K* O1O2O3O4U5U3U2U6U1O5O6U4
Gauss code of -K* O1O2O3O4U1O5O6U4U5U3U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 0 0 0 1 3],[ 4 0 4 3 1 2 3],[ 0 -4 0 0 -1 1 3],[ 0 -3 0 0 -1 1 2],[ 0 -1 1 1 0 1 1],[-1 -2 -1 -1 -1 0 1],[-3 -3 -3 -2 -1 -1 0]]
Primitive based matrix [[ 0 3 1 0 0 0 -4],[-3 0 -1 -1 -2 -3 -3],[-1 1 0 -1 -1 -1 -2],[ 0 1 1 0 1 1 -1],[ 0 2 1 -1 0 0 -3],[ 0 3 1 -1 0 0 -4],[ 4 3 2 1 3 4 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,0,0,4,1,1,2,3,3,1,1,1,2,-1,-1,1,0,3,4]
Phi over symmetry [-4,0,0,0,1,3,0,1,3,3,4,0,1,0,0,1,0,1,0,2,1]
Phi of -K [-4,0,0,0,1,3,0,1,3,3,4,0,1,0,0,1,0,1,0,2,1]
Phi of K* [-3,-1,0,0,0,4,1,0,1,2,4,0,0,0,3,0,-1,0,-1,1,3]
Phi of -K* [-4,0,0,0,1,3,1,3,4,2,3,1,1,1,1,0,1,2,1,3,1]
Symmetry type of based matrix c
u-polynomial t^4-t^3-t
Normalized Jones-Krushkal polynomial 5z^2+22z+25
Enhanced Jones-Krushkal polynomial 5w^3z^2-4w^3z+26w^2z+25w
Inner characteristic polynomial t^6+59t^4+24t^2
Outer characteristic polynomial t^7+85t^5+94t^3+8t
Flat arrow polynomial -2*K1*K2 + K1 - 2*K2**2 + K3 + K4 + 2
2-strand cable arrow polynomial -64*K1**4 + 96*K1**3*K3*K4 - 320*K1**2*K2*K4 + 344*K1**2*K2 - 1168*K1**2*K3**2 - 64*K1**2*K3*K5 - 240*K1**2*K4**2 - 2264*K1**2 + 96*K1*K2*K3*K4**2 - 192*K1*K2*K3*K4 + 2648*K1*K2*K3 + 2984*K1*K3*K4 + 392*K1*K4*K5 - 72*K2**2*K4**2 + 432*K2**2*K4 - 1426*K2**2 - 160*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 176*K2*K3*K5 + 104*K2*K4*K6 + 8*K2*K5*K7 - 16*K3**4 - 96*K3**2*K4**2 + 88*K3**2*K6 - 2076*K3**2 + 80*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1344*K4**2 - 172*K5**2 - 46*K6**2 - 16*K7**2 - 2*K8**2 + 2352
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact