Min(phi) over symmetries of the knot is: [-4,-1,0,1,1,3,0,3,1,3,4,2,1,1,1,0,0,2,-1,0,1] |
Flat knots (up to 7 crossings) with same phi are :['6.274'] |
Arrow polynomial of the knot is: 4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 2*K1*K2 - 2*K1*K3 - 2*K1 + 2*K2 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.172', '6.274', '6.286', '6.423', '6.461'] |
Outer characteristic polynomial of the knot is: t^7+88t^5+146t^3+16t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.274'] |
2-strand cable arrow polynomial of the knot is: -400*K1**4 - 32*K1**3*K3 - 512*K1**2*K2**4 + 992*K1**2*K2**3 + 64*K1**2*K2**2*K4 - 4352*K1**2*K2**2 - 224*K1**2*K2*K4 + 4760*K1**2*K2 - 16*K1**2*K3**2 - 48*K1**2*K4**2 - 3848*K1**2 + 1472*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 + 128*K1*K2**2*K4*K5 - 608*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 5056*K1*K2*K3 + 368*K1*K3*K4 + 144*K1*K4*K5 - 736*K2**6 - 256*K2**4*K3**2 - 32*K2**4*K4**2 + 800*K2**4*K4 - 2616*K2**4 + 320*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 1088*K2**2*K3**2 - 344*K2**2*K4**2 + 2152*K2**2*K4 - 160*K2**2*K5**2 - 8*K2**2*K6**2 - 1820*K2**2 + 712*K2*K3*K5 + 32*K2*K4*K6 - 1460*K3**2 - 460*K4**2 - 116*K5**2 - 4*K6**2 + 3034 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.274'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71618', 'vk6.71776', 'vk6.72195', 'vk6.72345', 'vk6.73372', 'vk6.73535', 'vk6.75277', 'vk6.75545', 'vk6.77240', 'vk6.77321', 'vk6.77568', 'vk6.77679', 'vk6.78260', 'vk6.78511', 'vk6.80076', 'vk6.80226', 'vk6.81116', 'vk6.81172', 'vk6.81191', 'vk6.81238', 'vk6.81331', 'vk6.81518', 'vk6.82007', 'vk6.82420', 'vk6.82742', 'vk6.85433', 'vk6.86344', 'vk6.86915', 'vk6.87121', 'vk6.88100', 'vk6.88657', 'vk6.88762'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U1U4O6U5U2U3U6 |
R3 orbit | {'O1O2O3O4O5U1U4O6U5U2U3U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U6U3U4U1O6U2U5 |
Gauss code of K* | O1O2O3O4U5U2U3U6U1O5O6U4 |
Gauss code of -K* | O1O2O3O4U1O5O6U4U5U2U3U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -4 -1 1 0 1 3],[ 4 0 3 4 1 2 3],[ 1 -3 0 1 -1 1 3],[-1 -4 -1 0 -1 1 2],[ 0 -1 1 1 0 1 1],[-1 -2 -1 -1 -1 0 1],[-3 -3 -3 -2 -1 -1 0]] |
Primitive based matrix | [[ 0 3 1 1 0 -1 -4],[-3 0 -1 -2 -1 -3 -3],[-1 1 0 -1 -1 -1 -2],[-1 2 1 0 -1 -1 -4],[ 0 1 1 1 0 1 -1],[ 1 3 1 1 -1 0 -3],[ 4 3 2 4 1 3 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-1,-1,0,1,4,1,2,1,3,3,1,1,1,2,1,1,4,-1,1,3] |
Phi over symmetry | [-4,-1,0,1,1,3,0,3,1,3,4,2,1,1,1,0,0,2,-1,0,1] |
Phi of -K | [-4,-1,0,1,1,3,0,3,1,3,4,2,1,1,1,0,0,2,-1,0,1] |
Phi of K* | [-3,-1,-1,0,1,4,0,1,2,1,4,1,0,1,1,0,1,3,2,3,0] |
Phi of -K* | [-4,-1,0,1,1,3,3,1,2,4,3,-1,1,1,3,1,1,1,-1,1,2] |
Symmetry type of based matrix | c |
u-polynomial | t^4-t^3-t |
Normalized Jones-Krushkal polynomial | 4z^2+17z+19 |
Enhanced Jones-Krushkal polynomial | -4w^4z^2+8w^3z^2-8w^3z+25w^2z+19w |
Inner characteristic polynomial | t^6+60t^4+44t^2+1 |
Outer characteristic polynomial | t^7+88t^5+146t^3+16t |
Flat arrow polynomial | 4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 2*K1*K2 - 2*K1*K3 - 2*K1 + 2*K2 + 3 |
2-strand cable arrow polynomial | -400*K1**4 - 32*K1**3*K3 - 512*K1**2*K2**4 + 992*K1**2*K2**3 + 64*K1**2*K2**2*K4 - 4352*K1**2*K2**2 - 224*K1**2*K2*K4 + 4760*K1**2*K2 - 16*K1**2*K3**2 - 48*K1**2*K4**2 - 3848*K1**2 + 1472*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 + 128*K1*K2**2*K4*K5 - 608*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 5056*K1*K2*K3 + 368*K1*K3*K4 + 144*K1*K4*K5 - 736*K2**6 - 256*K2**4*K3**2 - 32*K2**4*K4**2 + 800*K2**4*K4 - 2616*K2**4 + 320*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 1088*K2**2*K3**2 - 344*K2**2*K4**2 + 2152*K2**2*K4 - 160*K2**2*K5**2 - 8*K2**2*K6**2 - 1820*K2**2 + 712*K2*K3*K5 + 32*K2*K4*K6 - 1460*K3**2 - 460*K4**2 - 116*K5**2 - 4*K6**2 + 3034 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice | False |