Min(phi) over symmetries of the knot is: [-4,-1,0,0,2,3,1,0,3,3,4,0,1,1,2,1,0,0,1,2,0] |
Flat knots (up to 7 crossings) with same phi are :['6.272'] |
Arrow polynomial of the knot is: 8*K1**3 + 4*K1**2*K2 - 12*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 + 5*K2 + K3 + 6 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.272', '6.502'] |
Outer characteristic polynomial of the knot is: t^7+95t^5+60t^3+6t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.272'] |
2-strand cable arrow polynomial of the knot is: 192*K1**4*K2 - 2112*K1**4 + 32*K1**3*K2*K3 - 320*K1**3*K3 - 128*K1**2*K2**4 + 576*K1**2*K2**3 - 5440*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 480*K1**2*K2*K4 + 9328*K1**2*K2 - 128*K1**2*K3**2 - 16*K1**2*K4**2 - 6928*K1**2 + 1024*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 1600*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 384*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 8400*K1*K2*K3 + 1336*K1*K3*K4 + 192*K1*K4*K5 + 8*K1*K5*K6 - 64*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 192*K2**4*K4 - 1824*K2**4 + 96*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 - 1184*K2**2*K3**2 - 296*K2**2*K4**2 + 2528*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 5358*K2**2 - 64*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 936*K2*K3*K5 + 176*K2*K4*K6 + 32*K2*K5*K7 + 16*K3**2*K6 - 2884*K3**2 - 1030*K4**2 - 244*K5**2 - 34*K6**2 + 5780 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.272'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73353', 'vk6.73386', 'vk6.73514', 'vk6.73565', 'vk6.73719', 'vk6.73836', 'vk6.74252', 'vk6.74879', 'vk6.75324', 'vk6.75521', 'vk6.75838', 'vk6.76425', 'vk6.78243', 'vk6.78304', 'vk6.78490', 'vk6.78635', 'vk6.78828', 'vk6.79300', 'vk6.80064', 'vk6.80088', 'vk6.80212', 'vk6.80265', 'vk6.80397', 'vk6.80761', 'vk6.81944', 'vk6.82675', 'vk6.84739', 'vk6.85039', 'vk6.85139', 'vk6.86528', 'vk6.87336', 'vk6.89436'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U1U4O6U3U5U2U6 |
R3 orbit | {'O1O2O3O4O5U1U4O6U3U5U2U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U6U4U1U3O6U2U5 |
Gauss code of K* | O1O2O3O4U5U3U1U6U2O5O6U4 |
Gauss code of -K* | O1O2O3O4U1O5O6U3U5U4U2U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -4 0 -1 0 2 3],[ 4 0 4 2 1 3 3],[ 0 -4 0 -1 -1 2 3],[ 1 -2 1 0 0 2 2],[ 0 -1 1 0 0 1 1],[-2 -3 -2 -2 -1 0 1],[-3 -3 -3 -2 -1 -1 0]] |
Primitive based matrix | [[ 0 3 2 0 0 -1 -4],[-3 0 -1 -1 -3 -2 -3],[-2 1 0 -1 -2 -2 -3],[ 0 1 1 0 1 0 -1],[ 0 3 2 -1 0 -1 -4],[ 1 2 2 0 1 0 -2],[ 4 3 3 1 4 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-2,0,0,1,4,1,1,3,2,3,1,2,2,3,-1,0,1,1,4,2] |
Phi over symmetry | [-4,-1,0,0,2,3,1,0,3,3,4,0,1,1,2,1,0,0,1,2,0] |
Phi of -K | [-4,-1,0,0,2,3,1,0,3,3,4,0,1,1,2,1,0,0,1,2,0] |
Phi of K* | [-3,-2,0,0,1,4,0,0,2,2,4,0,1,1,3,-1,0,0,1,3,1] |
Phi of -K* | [-4,-1,0,0,2,3,2,1,4,3,3,0,1,2,2,1,1,1,2,3,1] |
Symmetry type of based matrix | c |
u-polynomial | t^4-t^3-t^2+t |
Normalized Jones-Krushkal polynomial | 4z^2+23z+31 |
Enhanced Jones-Krushkal polynomial | 4w^3z^2+23w^2z+31w |
Inner characteristic polynomial | t^6+65t^4+17t^2+1 |
Outer characteristic polynomial | t^7+95t^5+60t^3+6t |
Flat arrow polynomial | 8*K1**3 + 4*K1**2*K2 - 12*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 + 5*K2 + K3 + 6 |
2-strand cable arrow polynomial | 192*K1**4*K2 - 2112*K1**4 + 32*K1**3*K2*K3 - 320*K1**3*K3 - 128*K1**2*K2**4 + 576*K1**2*K2**3 - 5440*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 480*K1**2*K2*K4 + 9328*K1**2*K2 - 128*K1**2*K3**2 - 16*K1**2*K4**2 - 6928*K1**2 + 1024*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 1600*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 384*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 8400*K1*K2*K3 + 1336*K1*K3*K4 + 192*K1*K4*K5 + 8*K1*K5*K6 - 64*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 192*K2**4*K4 - 1824*K2**4 + 96*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 - 1184*K2**2*K3**2 - 296*K2**2*K4**2 + 2528*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 5358*K2**2 - 64*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 936*K2*K3*K5 + 176*K2*K4*K6 + 32*K2*K5*K7 + 16*K3**2*K6 - 2884*K3**2 - 1030*K4**2 - 244*K5**2 - 34*K6**2 + 5780 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {1, 3}, {2}]] |
If K is slice | False |