Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.264

Min(phi) over symmetries of the knot is: [-4,-1,0,0,2,3,1,2,4,3,3,1,2,2,2,0,1,2,2,3,1]
Flat knots (up to 7 crossings) with same phi are :['6.264']
Arrow polynomial of the knot is: 8*K1**3 + 4*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.143', '6.158', '6.264', '6.282', '6.501']
Outer characteristic polynomial of the knot is: t^7+101t^5+67t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.264']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 64*K1**4*K2 - 1024*K1**4 + 128*K1**3*K2**3*K3 - 128*K1**3*K2**2*K3 + 256*K1**3*K2*K3 - 416*K1**3*K3 - 1664*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 2752*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 6176*K1**2*K2**2 + 160*K1**2*K2*K3**2 - 384*K1**2*K2*K4 + 6288*K1**2*K2 - 448*K1**2*K3**2 - 4568*K1**2 - 128*K1*K2**4*K3 + 2976*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 1088*K1*K2**2*K3 - 160*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 6072*K1*K2*K3 + 752*K1*K3*K4 + 24*K1*K4*K5 + 16*K1*K5*K6 - 576*K2**6 - 256*K2**4*K3**2 - 32*K2**4*K4**2 + 704*K2**4*K4 - 2608*K2**4 + 224*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 1568*K2**2*K3**2 - 280*K2**2*K4**2 + 1448*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 1802*K2**2 + 648*K2*K3*K5 + 56*K2*K4*K6 + 8*K2*K5*K7 + 24*K3**2*K6 - 1824*K3**2 - 406*K4**2 - 112*K5**2 - 30*K6**2 + 3532
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.264']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73703', 'vk6.73820', 'vk6.74195', 'vk6.74806', 'vk6.75624', 'vk6.75812', 'vk6.76358', 'vk6.76871', 'vk6.78603', 'vk6.78801', 'vk6.79224', 'vk6.79696', 'vk6.80245', 'vk6.80385', 'vk6.80699', 'vk6.81067', 'vk6.81610', 'vk6.81796', 'vk6.81920', 'vk6.82169', 'vk6.82297', 'vk6.82645', 'vk6.83187', 'vk6.84050', 'vk6.84210', 'vk6.84684', 'vk6.85005', 'vk6.86019', 'vk6.87745', 'vk6.88198', 'vk6.89398', 'vk6.89604']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U1U3O6U4U5U2U6
R3 orbit {'O1O2O3O4O5U1U3O6U4U5U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U6U4U1U2O6U3U5
Gauss code of K* O1O2O3O4U5U3U6U1U2O5O6U4
Gauss code of -K* O1O2O3O4U1O5O6U3U4U5U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 0 -1 0 2 3],[ 4 0 4 1 2 3 3],[ 0 -4 0 -2 0 2 3],[ 1 -1 2 0 1 2 2],[ 0 -2 0 -1 0 1 2],[-2 -3 -2 -2 -1 0 1],[-3 -3 -3 -2 -2 -1 0]]
Primitive based matrix [[ 0 3 2 0 0 -1 -4],[-3 0 -1 -2 -3 -2 -3],[-2 1 0 -1 -2 -2 -3],[ 0 2 1 0 0 -1 -2],[ 0 3 2 0 0 -2 -4],[ 1 2 2 1 2 0 -1],[ 4 3 3 2 4 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,0,0,1,4,1,2,3,2,3,1,2,2,3,0,1,2,2,4,1]
Phi over symmetry [-4,-1,0,0,2,3,1,2,4,3,3,1,2,2,2,0,1,2,2,3,1]
Phi of -K [-4,-1,0,0,2,3,2,0,2,3,4,-1,0,1,2,0,0,0,1,1,0]
Phi of K* [-3,-2,0,0,1,4,0,0,1,2,4,0,1,1,3,0,-1,0,0,2,2]
Phi of -K* [-4,-1,0,0,2,3,1,2,4,3,3,1,2,2,2,0,1,2,2,3,1]
Symmetry type of based matrix c
u-polynomial t^4-t^3-t^2+t
Normalized Jones-Krushkal polynomial 2z^2+15z+23
Enhanced Jones-Krushkal polynomial -2w^4z^2+4w^3z^2-6w^3z+21w^2z+23w
Inner characteristic polynomial t^6+71t^4+12t^2
Outer characteristic polynomial t^7+101t^5+67t^3+7t
Flat arrow polynomial 8*K1**3 + 4*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -64*K1**4*K2**2 + 64*K1**4*K2 - 1024*K1**4 + 128*K1**3*K2**3*K3 - 128*K1**3*K2**2*K3 + 256*K1**3*K2*K3 - 416*K1**3*K3 - 1664*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 2752*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 6176*K1**2*K2**2 + 160*K1**2*K2*K3**2 - 384*K1**2*K2*K4 + 6288*K1**2*K2 - 448*K1**2*K3**2 - 4568*K1**2 - 128*K1*K2**4*K3 + 2976*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 1088*K1*K2**2*K3 - 160*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 6072*K1*K2*K3 + 752*K1*K3*K4 + 24*K1*K4*K5 + 16*K1*K5*K6 - 576*K2**6 - 256*K2**4*K3**2 - 32*K2**4*K4**2 + 704*K2**4*K4 - 2608*K2**4 + 224*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 1568*K2**2*K3**2 - 280*K2**2*K4**2 + 1448*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 1802*K2**2 + 648*K2*K3*K5 + 56*K2*K4*K6 + 8*K2*K5*K7 + 24*K3**2*K6 - 1824*K3**2 - 406*K4**2 - 112*K5**2 - 30*K6**2 + 3532
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact