Gauss code |
O1O2O3O4O5U1U3O6U4U2U5U6 |
R3 orbit |
{'O1O2O3O4O5U1U3O6U4U2U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U1U4U2O6U3U5 |
Gauss code of K* |
O1O2O3O4U5U2U6U1U3O5O6U4 |
Gauss code of -K* |
O1O2O3O4U1O5O6U2U4U5U3U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -1 -1 0 3 3],[ 4 0 3 1 2 4 3],[ 1 -3 0 -1 1 3 3],[ 1 -1 1 0 1 2 2],[ 0 -2 -1 -1 0 1 2],[-3 -4 -3 -2 -1 0 1],[-3 -3 -3 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 3 0 -1 -1 -4],[-3 0 1 -1 -2 -3 -4],[-3 -1 0 -2 -2 -3 -3],[ 0 1 2 0 -1 -1 -2],[ 1 2 2 1 0 1 -1],[ 1 3 3 1 -1 0 -3],[ 4 4 3 2 1 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-3,0,1,1,4,-1,1,2,3,4,2,2,3,3,1,1,2,-1,1,3] |
Phi over symmetry |
[-4,-1,-1,0,3,3,0,2,2,3,4,1,0,1,1,0,2,2,2,1,-1] |
Phi of -K |
[-4,-1,-1,0,3,3,0,2,2,3,4,1,0,1,1,0,2,2,2,1,-1] |
Phi of K* |
[-3,-3,0,1,1,4,-1,1,1,2,4,2,1,2,3,0,0,2,-1,0,2] |
Phi of -K* |
[-4,-1,-1,0,3,3,1,3,2,3,4,1,1,2,2,1,3,3,2,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-2t^3+2t |
Normalized Jones-Krushkal polynomial |
4z^2+25z+35 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+25w^2z+35w |
Inner characteristic polynomial |
t^6+74t^4+30t^2+1 |
Outer characteristic polynomial |
t^7+110t^5+86t^3+11t |
Flat arrow polynomial |
-2*K1**2 - 4*K1*K2 - 2*K1*K3 + 2*K1 + 2*K2 + 2*K3 + K4 + 2 |
2-strand cable arrow polynomial |
-784*K1**4 + 320*K1**3*K2*K3 + 32*K1**3*K3*K4 - 288*K1**3*K3 - 1440*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 352*K1**2*K2*K4 + 3216*K1**2*K2 - 2096*K1**2*K3**2 - 96*K1**2*K3*K5 - 64*K1**2*K4**2 - 64*K1**2*K6**2 - 4848*K1**2 + 96*K1*K2**3*K3 - 704*K1*K2**2*K3 - 96*K1*K2**2*K5 - 64*K1*K2*K3*K4 - 128*K1*K2*K3*K6 + 7344*K1*K2*K3 - 32*K1*K2*K4*K5 - 32*K1*K2*K5*K6 + 3128*K1*K3*K4 + 184*K1*K4*K5 + 256*K1*K5*K6 + 80*K1*K6*K7 - 72*K2**4 - 32*K2**3*K6 - 352*K2**2*K3**2 - 48*K2**2*K4**2 + 640*K2**2*K4 - 8*K2**2*K6**2 - 4000*K2**2 - 32*K2*K3**2*K4 + 632*K2*K3*K5 + 320*K2*K4*K6 + 16*K2*K5*K7 + 8*K2*K6*K8 + 120*K3**2*K6 - 3656*K3**2 - 1184*K4**2 - 336*K5**2 - 280*K6**2 - 24*K7**2 - 2*K8**2 + 4656 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {1, 5}, {2, 3}]] |
If K is slice |
False |