Min(phi) over symmetries of the knot is: [-4,-2,-1,2,2,3,0,2,3,4,3,1,2,2,1,2,2,2,-1,0,2] |
Flat knots (up to 7 crossings) with same phi are :['6.261'] |
Arrow polynomial of the knot is: 4*K1**2*K2 - 4*K1**2 - 2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.105', '6.144', '6.261', '6.285', '6.392', '6.480'] |
Outer characteristic polynomial of the knot is: t^7+105t^5+64t^3+5t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.261'] |
2-strand cable arrow polynomial of the knot is: -1056*K1**4 + 608*K1**3*K2*K3 - 800*K1**3*K3 + 64*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 - 2784*K1**2*K2**2 + 256*K1**2*K2*K3**2 - 736*K1**2*K2*K4 + 6248*K1**2*K2 - 1920*K1**2*K3**2 - 6552*K1**2 + 448*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 1024*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 64*K1*K2**2*K5 + 32*K1*K2*K3**3 - 320*K1*K2*K3*K4 + 8064*K1*K2*K3 - 160*K1*K2*K4*K5 + 3168*K1*K3*K4 + 232*K1*K4*K5 + 32*K1*K5*K6 - 32*K2**4*K4**2 + 128*K2**4*K4 - 720*K2**4 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 800*K2**2*K3**2 - 312*K2**2*K4**2 + 1384*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 4634*K2**2 - 96*K2*K3**2*K4 + 680*K2*K3*K5 + 312*K2*K4*K6 + 8*K2*K5*K7 + 8*K3**2*K6 - 3424*K3**2 - 1422*K4**2 - 240*K5**2 - 70*K6**2 + 5372 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.261'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73328', 'vk6.73342', 'vk6.73489', 'vk6.73504', 'vk6.75250', 'vk6.75269', 'vk6.75498', 'vk6.75514', 'vk6.78218', 'vk6.78226', 'vk6.78456', 'vk6.78469', 'vk6.80044', 'vk6.80053', 'vk6.80192', 'vk6.80202', 'vk6.81932', 'vk6.81933', 'vk6.82196', 'vk6.82214', 'vk6.82656', 'vk6.82660', 'vk6.84716', 'vk6.84722', 'vk6.85020', 'vk6.85022', 'vk6.85750', 'vk6.86505', 'vk6.87325', 'vk6.87687', 'vk6.89627', 'vk6.90078'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U1U3O6U2U5U6U4 |
R3 orbit | {'O1O2O3O4O5U1U3O6U2U5U6U4'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U2U6U1U4O6U3U5 |
Gauss code of K* | O1O2O3O4U5U1U6U4U2O5O6U3 |
Gauss code of -K* | O1O2O3O4U2O5O6U3U1U5U4U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -4 -2 -1 3 2 2],[ 4 0 2 1 4 3 2],[ 2 -2 0 0 4 2 2],[ 1 -1 0 0 2 1 1],[-3 -4 -4 -2 0 -1 1],[-2 -3 -2 -1 1 0 1],[-2 -2 -2 -1 -1 -1 0]] |
Primitive based matrix | [[ 0 3 2 2 -1 -2 -4],[-3 0 1 -1 -2 -4 -4],[-2 -1 0 -1 -1 -2 -2],[-2 1 1 0 -1 -2 -3],[ 1 2 1 1 0 0 -1],[ 2 4 2 2 0 0 -2],[ 4 4 2 3 1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-2,-2,1,2,4,-1,1,2,4,4,1,1,2,2,1,2,3,0,1,2] |
Phi over symmetry | [-4,-2,-1,2,2,3,0,2,3,4,3,1,2,2,1,2,2,2,-1,0,2] |
Phi of -K | [-4,-2,-1,2,2,3,0,2,3,4,3,1,2,2,1,2,2,2,-1,0,2] |
Phi of K* | [-3,-2,-2,1,2,4,0,2,2,1,3,1,2,2,3,2,2,4,1,2,0] |
Phi of -K* | [-4,-2,-1,2,2,3,2,1,2,3,4,0,2,2,4,1,1,2,-1,-1,1] |
Symmetry type of based matrix | c |
u-polynomial | t^4-t^3-t^2+t |
Normalized Jones-Krushkal polynomial | 5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial | 5w^3z^2+26w^2z+33w |
Inner characteristic polynomial | t^6+67t^4+11t^2 |
Outer characteristic polynomial | t^7+105t^5+64t^3+5t |
Flat arrow polynomial | 4*K1**2*K2 - 4*K1**2 - 2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + 2 |
2-strand cable arrow polynomial | -1056*K1**4 + 608*K1**3*K2*K3 - 800*K1**3*K3 + 64*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 - 2784*K1**2*K2**2 + 256*K1**2*K2*K3**2 - 736*K1**2*K2*K4 + 6248*K1**2*K2 - 1920*K1**2*K3**2 - 6552*K1**2 + 448*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 1024*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 64*K1*K2**2*K5 + 32*K1*K2*K3**3 - 320*K1*K2*K3*K4 + 8064*K1*K2*K3 - 160*K1*K2*K4*K5 + 3168*K1*K3*K4 + 232*K1*K4*K5 + 32*K1*K5*K6 - 32*K2**4*K4**2 + 128*K2**4*K4 - 720*K2**4 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 800*K2**2*K3**2 - 312*K2**2*K4**2 + 1384*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 4634*K2**2 - 96*K2*K3**2*K4 + 680*K2*K3*K5 + 312*K2*K4*K6 + 8*K2*K5*K7 + 8*K3**2*K6 - 3424*K3**2 - 1422*K4**2 - 240*K5**2 - 70*K6**2 + 5372 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{3, 6}, {1, 5}, {2, 4}]] |
If K is slice | False |