Gauss code |
O1O2O3O4O5U1U2O6U5U6U3U4 |
R3 orbit |
{'O1O2O3O4O5U1U2O6U5U6U3U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U2U3U6U1O6U4U5 |
Gauss code of K* |
O1O2O3O4U5U6U3U4U1O5O6U2 |
Gauss code of -K* |
O1O2O3O4U3O5O6U4U1U2U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -2 1 3 1 1],[ 4 0 1 3 4 2 1],[ 2 -1 0 2 3 1 1],[-1 -3 -2 0 1 -1 1],[-3 -4 -3 -1 0 -1 1],[-1 -2 -1 1 1 0 1],[-1 -1 -1 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 1 1 1 -2 -4],[-3 0 1 -1 -1 -3 -4],[-1 -1 0 -1 -1 -1 -1],[-1 1 1 0 1 -1 -2],[-1 1 1 -1 0 -2 -3],[ 2 3 1 1 2 0 -1],[ 4 4 1 2 3 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,-1,2,4,-1,1,1,3,4,1,1,1,1,-1,1,2,2,3,1] |
Phi over symmetry |
[-4,-2,1,1,1,3,1,1,2,3,4,1,1,2,3,-1,-1,-1,1,1,1] |
Phi of -K |
[-4,-2,1,1,1,3,1,2,3,4,3,1,2,2,2,1,-1,1,-1,1,3] |
Phi of K* |
[-3,-1,-1,-1,2,4,1,1,3,2,3,-1,1,1,2,1,2,3,2,4,1] |
Phi of -K* |
[-4,-2,1,1,1,3,1,1,2,3,4,1,1,2,3,-1,-1,-1,1,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^3+t^2-3t |
Normalized Jones-Krushkal polynomial |
4z^2+17z+19 |
Enhanced Jones-Krushkal polynomial |
-4w^4z^2+8w^3z^2-4w^3z+21w^2z+19w |
Inner characteristic polynomial |
t^6+52t^4+17t^2 |
Outer characteristic polynomial |
t^7+84t^5+108t^3+7t |
Flat arrow polynomial |
-8*K1**4 + 4*K1**3 + 4*K1**2*K2 - 2*K1**2 - 2*K1*K2 - 2*K1 + 3*K2 + 4 |
2-strand cable arrow polynomial |
-1296*K1**4 - 192*K1**3*K3 - 768*K1**2*K2**6 + 1408*K1**2*K2**5 - 3392*K1**2*K2**4 + 4416*K1**2*K2**3 - 8640*K1**2*K2**2 - 416*K1**2*K2*K4 + 7144*K1**2*K2 - 144*K1**2*K3**2 - 3676*K1**2 + 640*K1*K2**5*K3 - 640*K1*K2**4*K3 + 3360*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 1536*K1*K2**2*K3 - 384*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 5776*K1*K2*K3 + 424*K1*K3*K4 + 40*K1*K4*K5 - 128*K2**8 + 128*K2**6*K4 - 1440*K2**6 - 192*K2**4*K3**2 - 32*K2**4*K4**2 + 992*K2**4*K4 - 3240*K2**4 + 32*K2**3*K3*K5 - 96*K2**3*K6 - 944*K2**2*K3**2 - 168*K2**2*K4**2 + 2256*K2**2*K4 - 816*K2**2 + 280*K2*K3*K5 + 56*K2*K4*K6 - 1120*K3**2 - 318*K4**2 - 20*K5**2 + 2804 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}]] |
If K is slice |
False |