Gauss code |
O1O2O3O4O5U1U2O6U3U5U6U4 |
R3 orbit |
{'O1O2O3O4O5U1U2O6U3U5U6U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U2U6U1U3O6U4U5 |
Gauss code of K* |
O1O2O3O4U5U6U1U4U2O5O6U3 |
Gauss code of -K* |
O1O2O3O4U2O5O6U3U1U4U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -2 -1 3 2 2],[ 4 0 1 2 4 3 2],[ 2 -1 0 1 3 2 2],[ 1 -2 -1 0 3 1 2],[-3 -4 -3 -3 0 -1 1],[-2 -3 -2 -1 1 0 1],[-2 -2 -2 -2 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 2 2 -1 -2 -4],[-3 0 1 -1 -3 -3 -4],[-2 -1 0 -1 -2 -2 -2],[-2 1 1 0 -1 -2 -3],[ 1 3 2 1 0 -1 -2],[ 2 3 2 2 1 0 -1],[ 4 4 2 3 2 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-2,1,2,4,-1,1,3,3,4,1,2,2,2,1,2,3,1,2,1] |
Phi over symmetry |
[-4,-2,-1,2,2,3,1,1,3,4,3,0,2,2,2,2,1,1,-1,0,2] |
Phi of -K |
[-4,-2,-1,2,2,3,1,1,3,4,3,0,2,2,2,2,1,1,-1,0,2] |
Phi of K* |
[-3,-2,-2,1,2,4,0,2,1,2,3,1,2,2,3,1,2,4,0,1,1] |
Phi of -K* |
[-4,-2,-1,2,2,3,1,2,2,3,4,1,2,2,3,2,1,3,-1,-1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^3-t^2+t |
Normalized Jones-Krushkal polynomial |
4z^2+21z+27 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2-4w^3z+25w^2z+27w |
Inner characteristic polynomial |
t^6+69t^4+24t^2+1 |
Outer characteristic polynomial |
t^7+107t^5+107t^3+9t |
Flat arrow polynomial |
12*K1**3 - 8*K1**2 - 10*K1*K2 - 2*K1*K3 - 4*K1 + 5*K2 + 2*K3 + K4 + 5 |
2-strand cable arrow polynomial |
-128*K1**4*K2**2 + 128*K1**4*K2 - 608*K1**4 + 128*K1**3*K2**3*K3 - 128*K1**3*K2**2*K3 + 256*K1**3*K2*K3 - 288*K1**3*K3 - 1408*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 3744*K1**2*K2**3 - 192*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 9152*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 544*K1**2*K2*K4 + 8432*K1**2*K2 - 336*K1**2*K3**2 - 32*K1**2*K3*K5 - 6328*K1**2 - 256*K1*K2**4*K3 + 3328*K1*K2**3*K3 + 384*K1*K2**2*K3*K4 - 2272*K1*K2**2*K3 - 480*K1*K2**2*K5 + 64*K1*K2*K3**3 - 448*K1*K2*K3*K4 + 8216*K1*K2*K3 + 1168*K1*K3*K4 + 192*K1*K4*K5 + 8*K1*K5*K6 - 96*K2**6 + 480*K2**4*K4 - 3856*K2**4 + 64*K2**3*K3*K5 - 64*K2**3*K6 - 1920*K2**2*K3**2 - 392*K2**2*K4**2 + 2696*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 2832*K2**2 - 64*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 960*K2*K3*K5 + 152*K2*K4*K6 + 48*K2*K5*K7 + 8*K2*K6*K8 - 48*K3**4 + 48*K3**2*K6 - 2336*K3**2 + 16*K3*K4*K7 - 822*K4**2 - 232*K5**2 - 40*K6**2 - 16*K7**2 - 2*K8**2 + 4774 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |