Gauss code |
O1O2O3O4O5U1U2O6U3U5U4U6 |
R3 orbit |
{'O1O2O3O4O5U1U2O6U3U5U4U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U2U1U3O6U4U5 |
Gauss code of K* |
O1O2O3O4U5U6U1U3U2O5O6U4 |
Gauss code of -K* |
O1O2O3O4U1O5O6U3U2U4U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -2 -1 2 2 3],[ 4 0 1 2 4 3 3],[ 2 -1 0 1 3 2 3],[ 1 -2 -1 0 2 1 3],[-2 -4 -3 -2 0 0 2],[-2 -3 -2 -1 0 0 1],[-3 -3 -3 -3 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 2 2 -1 -2 -4],[-3 0 -1 -2 -3 -3 -3],[-2 1 0 0 -1 -2 -3],[-2 2 0 0 -2 -3 -4],[ 1 3 1 2 0 -1 -2],[ 2 3 2 3 1 0 -1],[ 4 3 3 4 2 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-2,1,2,4,1,2,3,3,3,0,1,2,3,2,3,4,1,2,1] |
Phi over symmetry |
[-4,-2,-1,2,2,3,1,1,2,3,4,0,1,2,2,1,2,1,0,-1,0] |
Phi of -K |
[-4,-2,-1,2,2,3,1,1,2,3,4,0,1,2,2,1,2,1,0,-1,0] |
Phi of K* |
[-3,-2,-2,1,2,4,-1,0,1,2,4,0,1,1,2,2,2,3,0,1,1] |
Phi of -K* |
[-4,-2,-1,2,2,3,1,2,3,4,3,1,2,3,3,1,2,3,0,1,2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^3-t^2+t |
Normalized Jones-Krushkal polynomial |
4z^2+17z+19 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+6w^3z^2-6w^3z+23w^2z+19w |
Inner characteristic polynomial |
t^6+81t^4+41t^2 |
Outer characteristic polynomial |
t^7+119t^5+124t^3+7t |
Flat arrow polynomial |
4*K1**3 - 6*K1*K2 - 2*K1*K3 + K2 + 2*K3 + K4 + 1 |
2-strand cable arrow polynomial |
96*K1**3*K2*K3 - 256*K1**3*K3 + 192*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 - 1984*K1**2*K2**2 + 384*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 192*K1**2*K2*K4 + 2808*K1**2*K2 - 1120*K1**2*K3**2 - 64*K1**2*K3*K5 - 3052*K1**2 + 1216*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 1536*K1*K2**2*K3 - 192*K1*K2**2*K5 + 128*K1*K2*K3**3 - 704*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 5368*K1*K2*K3 - 64*K1*K2*K4*K5 + 1712*K1*K3*K4 + 152*K1*K4*K5 + 48*K1*K5*K6 + 8*K1*K6*K7 - 32*K2**6 + 96*K2**4*K4 - 1328*K2**4 + 32*K2**3*K3*K5 - 32*K2**3*K6 - 1968*K2**2*K3**2 - 120*K2**2*K4**2 + 1584*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 2128*K2**2 - 96*K2*K3**2*K4 + 1240*K2*K3*K5 + 128*K2*K4*K6 + 48*K2*K5*K7 + 8*K2*K6*K8 - 1904*K3**2 - 710*K4**2 - 188*K5**2 - 48*K6**2 - 16*K7**2 - 2*K8**2 + 2590 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}]] |
If K is slice |
False |