Gauss code |
O1O2O3O4O5U1U2O6U3U4U5U6 |
R3 orbit |
{'O1O2O3O4O5U1U2O6U3U4U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U1U2U3O6U4U5 |
Gauss code of K* |
O1O2O3O4U5U6U1U2U3O5O6U4 |
Gauss code of -K* |
O1O2O3O4U1O5O6U2U3U4U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -2 -1 1 3 3],[ 4 0 1 2 3 4 3],[ 2 -1 0 1 2 3 3],[ 1 -2 -1 0 1 2 3],[-1 -3 -2 -1 0 1 2],[-3 -4 -3 -2 -1 0 1],[-3 -3 -3 -3 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 3 1 -1 -2 -4],[-3 0 1 -1 -2 -3 -4],[-3 -1 0 -2 -3 -3 -3],[-1 1 2 0 -1 -2 -3],[ 1 2 3 1 0 -1 -2],[ 2 3 3 2 1 0 -1],[ 4 4 3 3 2 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-3,-1,1,2,4,-1,1,2,3,4,2,3,3,3,1,2,3,1,2,1] |
Phi over symmetry |
[-4,-2,-1,1,3,3,1,1,2,3,4,0,1,2,2,1,2,1,1,0,-1] |
Phi of -K |
[-4,-2,-1,1,3,3,1,1,2,3,4,0,1,2,2,1,2,1,1,0,-1] |
Phi of K* |
[-3,-3,-1,1,2,4,-1,0,1,2,4,1,2,2,3,1,1,2,0,1,1] |
Phi of -K* |
[-4,-2,-1,1,3,3,1,2,3,3,4,1,2,3,3,1,3,2,2,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-2t^3+t^2 |
Normalized Jones-Krushkal polynomial |
z^2+6z+9 |
Enhanced Jones-Krushkal polynomial |
-6w^4z^2+7w^3z^2-10w^3z+16w^2z+9w |
Inner characteristic polynomial |
t^6+82t^4+35t^2 |
Outer characteristic polynomial |
t^7+122t^5+102t^3+6t |
Flat arrow polynomial |
-8*K1**4 + 8*K1**3 + 4*K1**2*K2 + 2*K1**2 - 4*K1*K2 - 4*K1 + K2 + 2 |
2-strand cable arrow polynomial |
-384*K1**4 - 1024*K1**2*K2**6 + 3328*K1**2*K2**5 - 6400*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 5056*K1**2*K2**3 - 5536*K1**2*K2**2 - 96*K1**2*K2*K4 + 3736*K1**2*K2 - 32*K1**2*K3**2 - 1932*K1**2 + 1408*K1*K2**5*K3 - 1536*K1*K2**4*K3 - 128*K1*K2**4*K5 + 3168*K1*K2**3*K3 - 1088*K1*K2**2*K3 - 96*K1*K2**2*K5 + 2608*K1*K2*K3 + 96*K1*K3*K4 - 128*K2**8 + 128*K2**6*K4 - 3008*K2**6 - 384*K2**4*K3**2 - 32*K2**4*K4**2 + 1632*K2**4*K4 - 1032*K2**4 + 32*K2**3*K3*K5 - 368*K2**2*K3**2 - 80*K2**2*K4**2 + 1208*K2**2*K4 + 104*K2**2 + 72*K2*K3*K5 - 368*K3**2 - 138*K4**2 - 4*K5**2 + 1344 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |