Min(phi) over symmetries of the knot is: [-4,-1,1,1,1,2,0,1,3,4,3,0,1,1,1,0,0,0,0,1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.247'] |
Arrow polynomial of the knot is: -2*K1**2 - 4*K1*K2 + 2*K1 - 2*K2**2 + K2 + 2*K3 + K4 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.83', '6.151', '6.160', '6.190', '6.247', '6.262', '6.491', '6.514'] |
Outer characteristic polynomial of the knot is: t^7+64t^5+33t^3+3t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.247'] |
2-strand cable arrow polynomial of the knot is: -1296*K1**4 + 224*K1**3*K2*K3 + 64*K1**3*K3*K4 - 224*K1**3*K3 + 96*K1**2*K2**2*K4 - 1328*K1**2*K2**2 - 352*K1**2*K2*K4 + 2952*K1**2*K2 - 432*K1**2*K3**2 - 96*K1**2*K3*K5 - 160*K1**2*K4**2 - 1672*K1**2 - 480*K1*K2**2*K3 - 64*K1*K2**2*K5 - 192*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 2384*K1*K2*K3 + 1224*K1*K3*K4 + 360*K1*K4*K5 + 24*K1*K5*K6 - 72*K2**4 - 96*K2**2*K3**2 - 80*K2**2*K4**2 + 616*K2**2*K4 - 1620*K2**2 - 32*K2*K3*K4*K5 + 304*K2*K3*K5 + 80*K2*K4*K6 + 8*K2*K5*K7 - 16*K3**2*K4**2 + 8*K3**2*K6 - 996*K3**2 + 24*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 638*K4**2 - 200*K5**2 - 28*K6**2 - 4*K7**2 - 2*K8**2 + 1742 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.247'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13385', 'vk6.13468', 'vk6.13657', 'vk6.13765', 'vk6.13923', 'vk6.14020', 'vk6.14195', 'vk6.14199', 'vk6.14434', 'vk6.14442', 'vk6.14994', 'vk6.15117', 'vk6.15663', 'vk6.16117', 'vk6.16123', 'vk6.16738', 'vk6.16783', 'vk6.23147', 'vk6.23194', 'vk6.25387', 'vk6.25664', 'vk6.33136', 'vk6.33185', 'vk6.33734', 'vk6.33811', 'vk6.35137', 'vk6.35181', 'vk6.35208', 'vk6.37517', 'vk6.37765', 'vk6.42672', 'vk6.42689', 'vk6.42739', 'vk6.42777', 'vk6.44689', 'vk6.44733', 'vk6.53569', 'vk6.54941', 'vk6.56600', 'vk6.64601'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U4O6U1U6U5U3U2 |
R3 orbit | {'O1O2O3O4O5U4O6U1U6U5U3U2', 'O1O2O3O4U3O5O6U1U6U4U5U2'} |
R3 orbit length | 2 |
Gauss code of -K | O1O2O3O4O5U4U3U1U6U5O6U2 |
Gauss code of K* | O1O2O3O4O5U1U5U4U6U3O6U2 |
Gauss code of -K* | O1O2O3O4O5U4O6U3U6U2U1U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -4 1 1 -1 2 1],[ 4 0 4 3 0 3 1],[-1 -4 0 0 -1 1 0],[-1 -3 0 0 -1 1 0],[ 1 0 1 1 0 1 0],[-2 -3 -1 -1 -1 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix | [[ 0 2 1 1 1 -1 -4],[-2 0 0 -1 -1 -1 -3],[-1 0 0 0 0 0 -1],[-1 1 0 0 0 -1 -3],[-1 1 0 0 0 -1 -4],[ 1 1 0 1 1 0 0],[ 4 3 1 3 4 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,-1,-1,1,4,0,1,1,1,3,0,0,0,1,0,1,3,1,4,0] |
Phi over symmetry | [-4,-1,1,1,1,2,0,1,3,4,3,0,1,1,1,0,0,0,0,1,1] |
Phi of -K | [-4,-1,1,1,1,2,3,1,2,4,3,1,1,2,2,0,0,0,0,0,1] |
Phi of K* | [-2,-1,-1,-1,1,4,0,0,1,2,3,0,0,1,1,0,1,2,2,4,3] |
Phi of -K* | [-4,-1,1,1,1,2,0,1,3,4,3,0,1,1,1,0,0,0,0,1,1] |
Symmetry type of based matrix | c |
u-polynomial | t^4-t^2-2t |
Normalized Jones-Krushkal polynomial | 4z^2+17z+19 |
Enhanced Jones-Krushkal polynomial | 4w^3z^2+17w^2z+19w |
Inner characteristic polynomial | t^6+40t^4+8t^2 |
Outer characteristic polynomial | t^7+64t^5+33t^3+3t |
Flat arrow polynomial | -2*K1**2 - 4*K1*K2 + 2*K1 - 2*K2**2 + K2 + 2*K3 + K4 + 3 |
2-strand cable arrow polynomial | -1296*K1**4 + 224*K1**3*K2*K3 + 64*K1**3*K3*K4 - 224*K1**3*K3 + 96*K1**2*K2**2*K4 - 1328*K1**2*K2**2 - 352*K1**2*K2*K4 + 2952*K1**2*K2 - 432*K1**2*K3**2 - 96*K1**2*K3*K5 - 160*K1**2*K4**2 - 1672*K1**2 - 480*K1*K2**2*K3 - 64*K1*K2**2*K5 - 192*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 2384*K1*K2*K3 + 1224*K1*K3*K4 + 360*K1*K4*K5 + 24*K1*K5*K6 - 72*K2**4 - 96*K2**2*K3**2 - 80*K2**2*K4**2 + 616*K2**2*K4 - 1620*K2**2 - 32*K2*K3*K4*K5 + 304*K2*K3*K5 + 80*K2*K4*K6 + 8*K2*K5*K7 - 16*K3**2*K4**2 + 8*K3**2*K6 - 996*K3**2 + 24*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 638*K4**2 - 200*K5**2 - 28*K6**2 - 4*K7**2 - 2*K8**2 + 1742 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice | False |