Gauss code |
O1O2O3O4O5U4O6U1U6U3U2U5 |
R3 orbit |
{'O1O2O3O4O5U4O6U1U6U3U2U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U1U4U3U6U5O6U2 |
Gauss code of K* |
O1O2O3O4O5U1U4U3U6U5O6U2 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 0 0 -1 4 1],[ 4 0 3 2 0 5 1],[ 0 -3 0 0 0 3 0],[ 0 -2 0 0 0 2 0],[ 1 0 0 0 0 1 0],[-4 -5 -3 -2 -1 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 4 1 0 0 -1 -4],[-4 0 0 -2 -3 -1 -5],[-1 0 0 0 0 0 -1],[ 0 2 0 0 0 0 -2],[ 0 3 0 0 0 0 -3],[ 1 1 0 0 0 0 0],[ 4 5 1 2 3 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-1,0,0,1,4,0,2,3,1,5,0,0,0,1,0,0,2,0,3,0] |
Phi over symmetry |
[-4,-1,0,0,1,4,0,2,3,1,5,0,0,0,1,0,0,2,0,3,0] |
Phi of -K |
[-4,-1,0,0,1,4,3,1,2,4,3,1,1,2,4,0,1,1,1,2,3] |
Phi of K* |
[-4,-1,0,0,1,4,3,1,2,4,3,1,1,2,4,0,1,1,1,2,3] |
Phi of -K* |
[-4,-1,0,0,1,4,0,2,3,1,5,0,0,0,1,0,0,2,0,3,0] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
7z+15 |
Enhanced Jones-Krushkal polynomial |
-8w^3z+15w^2z+15w |
Inner characteristic polynomial |
t^6+53t^4+27t^2 |
Outer characteristic polynomial |
t^7+87t^5+83t^3 |
Flat arrow polynomial |
-4*K1*K2 + 2*K1 - 4*K2**2 + 2*K3 + 2*K4 + 3 |
2-strand cable arrow polynomial |
-416*K1**4 + 192*K1**3*K3*K4 + 176*K1**2*K2 - 544*K1**2*K3**2 - 512*K1**2*K4**2 - 888*K1**2 + 768*K1*K2*K3 + 1824*K1*K3*K4 + 544*K1*K4*K5 - 16*K2**2*K4**2 + 128*K2**2*K4 - 460*K2**2 + 80*K2*K3*K5 + 32*K2*K4*K6 + 16*K2*K5*K7 - 32*K3**2*K4**2 - 1024*K3**2 + 48*K3*K4*K7 + 16*K3*K5*K8 - 16*K4**4 + 16*K4**2*K8 - 944*K4**2 - 224*K5**2 - 12*K6**2 - 24*K7**2 - 12*K8**2 + 1282 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}]] |
If K is slice |
True |