Gauss code |
O1O2O3O4O5U4O6U1U6U2U3U5 |
R3 orbit |
{'O1O2O3O4O5U4O6U1U6U2U3U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U1U3U4U6U5O6U2 |
Gauss code of K* |
O1O2O3O4O5U1U3U4U6U5O6U2 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -1 1 -1 4 1],[ 4 0 2 3 0 5 1],[ 1 -2 0 1 0 3 0],[-1 -3 -1 0 0 2 0],[ 1 0 0 0 0 1 0],[-4 -5 -3 -2 -1 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 4 1 1 -1 -1 -4],[-4 0 0 -2 -1 -3 -5],[-1 0 0 0 0 0 -1],[-1 2 0 0 0 -1 -3],[ 1 1 0 0 0 0 0],[ 1 3 0 1 0 0 -2],[ 4 5 1 3 0 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-1,-1,1,1,4,0,2,1,3,5,0,0,0,1,0,1,3,0,0,2] |
Phi over symmetry |
[-4,-1,-1,1,1,4,0,2,1,3,5,0,0,0,1,0,1,3,0,0,2] |
Phi of -K |
[-4,-1,-1,1,1,4,1,3,2,4,3,0,1,2,2,2,2,4,0,1,3] |
Phi of K* |
[-4,-1,-1,1,1,4,1,3,2,4,3,0,1,2,2,2,2,4,0,1,3] |
Phi of -K* |
[-4,-1,-1,1,1,4,0,2,1,3,5,0,0,0,1,0,1,3,0,0,2] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
4z^2+21z+27 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+21w^2z+27w |
Inner characteristic polynomial |
t^6+54t^4+29t^2+1 |
Outer characteristic polynomial |
t^7+90t^5+91t^3+5t |
Flat arrow polynomial |
8*K1**3 + 8*K1**2*K2 - 12*K1**2 - 4*K1*K2 - 4*K1*K3 - 4*K1 + 4*K2 + 5 |
2-strand cable arrow polynomial |
-128*K1**6 - 512*K1**4*K2**2 + 960*K1**4*K2 - 2112*K1**4 + 960*K1**3*K2*K3 - 384*K1**3*K3 - 768*K1**2*K2**4 + 960*K1**2*K2**3 - 512*K1**2*K2**2*K3**2 + 128*K1**2*K2**2*K4 - 5248*K1**2*K2**2 + 256*K1**2*K2*K3**2 - 576*K1**2*K2*K4 + 6416*K1**2*K2 - 1024*K1**2*K3**2 - 64*K1**2*K3*K5 - 64*K1**2*K4**2 - 3576*K1**2 + 2112*K1*K2**3*K3 + 576*K1*K2**2*K3*K4 - 1472*K1*K2**2*K3 - 384*K1*K2**2*K5 + 384*K1*K2*K3**3 - 192*K1*K2*K3*K4 - 128*K1*K2*K3*K6 + 5808*K1*K2*K3 + 1200*K1*K3*K4 + 48*K1*K4*K5 - 192*K2**6 - 384*K2**4*K3**2 - 64*K2**4*K4**2 + 256*K2**4*K4 - 1392*K2**4 + 256*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 128*K2**2*K3**4 + 64*K2**2*K3**2*K6 - 1344*K2**2*K3**2 - 272*K2**2*K4**2 + 1392*K2**2*K4 - 32*K2**2*K5**2 - 16*K2**2*K6**2 - 2464*K2**2 - 64*K2*K3**2*K4 + 528*K2*K3*K5 + 64*K2*K4*K6 - 64*K3**4 + 32*K3**2*K6 - 1496*K3**2 - 400*K4**2 - 32*K5**2 - 8*K6**2 + 3094 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{4, 6}, {1, 5}, {2, 3}]] |
If K is slice |
True |