Gauss code |
O1O2O3O4O5O6U1U3U6U2U4U5 |
R3 orbit |
{'O1O2O3O4O5O6U1U3U6U2U4U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U2U3U5U1U4U6 |
Gauss code of K* |
O1O2O3O4O5O6U1U4U2U5U6U3 |
Gauss code of -K* |
O1O2O3O4O5O6U4U1U2U5U3U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 -1 -2 2 4 2],[ 5 0 3 1 4 5 2],[ 1 -3 0 -1 2 3 1],[ 2 -1 1 0 2 3 1],[-2 -4 -2 -2 0 1 0],[-4 -5 -3 -3 -1 0 0],[-2 -2 -1 -1 0 0 0]] |
Primitive based matrix |
[[ 0 4 2 2 -1 -2 -5],[-4 0 0 -1 -3 -3 -5],[-2 0 0 0 -1 -1 -2],[-2 1 0 0 -2 -2 -4],[ 1 3 1 2 0 -1 -3],[ 2 3 1 2 1 0 -1],[ 5 5 2 4 3 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-2,-2,1,2,5,0,1,3,3,5,0,1,1,2,2,2,4,1,3,1] |
Phi over symmetry |
[-5,-2,-1,2,2,4,1,3,2,4,5,1,1,2,3,1,2,3,0,0,1] |
Phi of -K |
[-5,-2,-1,2,2,4,2,1,3,5,4,0,2,3,3,1,2,2,0,1,2] |
Phi of K* |
[-4,-2,-2,1,2,5,1,2,2,3,4,0,1,2,3,2,3,5,0,1,2] |
Phi of -K* |
[-5,-2,-1,2,2,4,1,3,2,4,5,1,1,2,3,1,2,3,0,0,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^5-t^4-t^2+t |
Normalized Jones-Krushkal polynomial |
4z^2+21z+27 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+21w^2z+27w |
Inner characteristic polynomial |
t^6+85t^4+12t^2 |
Outer characteristic polynomial |
t^7+139t^5+71t^3+4t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K3 - 8*K1**2 - 10*K1*K2 - 2*K1*K3 - 2*K1*K4 - 2*K1 + 5*K2 + 2*K3 + K4 + 5 |
2-strand cable arrow polynomial |
-752*K1**4 + 192*K1**3*K2*K3 - 288*K1**3*K3 + 448*K1**2*K2**3 - 192*K1**2*K2**2*K3**2 - 5472*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 544*K1**2*K2*K4 + 6664*K1**2*K2 - 448*K1**2*K3**2 - 32*K1**2*K3*K5 - 48*K1**2*K4**2 - 5104*K1**2 + 2400*K1*K2**3*K3 + 384*K1*K2**2*K3*K4 - 1472*K1*K2**2*K3 + 64*K1*K2**2*K4*K5 + 64*K1*K2**2*K5*K6 - 512*K1*K2**2*K5 + 32*K1*K2**2*K6*K7 + 96*K1*K2*K3**3 + 32*K1*K2*K3*K4**2 - 480*K1*K2*K3*K4 - 160*K1*K2*K3*K6 + 6912*K1*K2*K3 - 160*K1*K2*K4*K5 - 32*K1*K2*K4*K7 - 32*K1*K2*K5*K6 + 32*K1*K3**3*K4 + 1304*K1*K3*K4 + 256*K1*K4*K5 + 48*K1*K5*K6 + 24*K1*K6*K7 - 64*K2**6 - 384*K2**4*K3**2 + 160*K2**4*K4 - 32*K2**4*K6**2 - 2448*K2**4 + 320*K2**3*K3*K5 + 128*K2**3*K4*K6 + 32*K2**3*K6*K8 - 96*K2**3*K6 + 64*K2**2*K3**2*K4 - 2016*K2**2*K3**2 - 32*K2**2*K3*K7 - 488*K2**2*K4**2 - 32*K2**2*K4*K8 + 2440*K2**2*K4 - 160*K2**2*K5**2 - 136*K2**2*K6**2 - 32*K2**2*K7**2 - 8*K2**2*K8**2 - 3016*K2**2 - 64*K2*K3**2*K4 + 1096*K2*K3*K5 + 432*K2*K4*K6 + 72*K2*K5*K7 + 40*K2*K6*K8 + 8*K2*K7*K9 - 48*K3**4 - 32*K3**2*K4**2 + 40*K3**2*K6 - 2036*K3**2 + 24*K3*K4*K7 - 882*K4**2 - 204*K5**2 - 88*K6**2 - 32*K7**2 - 6*K8**2 + 4062 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |