Gauss code |
O1O2O3O4O5U3O6U2U6U4U1U5 |
R3 orbit |
{'O1O2O3O4O5U3O6U2U6U4U1U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U1U5U2U6U4O6U3 |
Gauss code of K* |
O1O2O3O4O5U4U1U6U3U5O6U2 |
Gauss code of -K* |
O1O2O3O4O5U4O6U1U3U6U5U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -3 -2 1 4 1],[ 1 0 -2 -1 2 4 1],[ 3 2 0 0 3 4 1],[ 2 1 0 0 1 2 0],[-1 -2 -3 -1 0 1 0],[-4 -4 -4 -2 -1 0 0],[-1 -1 -1 0 0 0 0]] |
Primitive based matrix |
[[ 0 4 1 1 -1 -2 -3],[-4 0 0 -1 -4 -2 -4],[-1 0 0 0 -1 0 -1],[-1 1 0 0 -2 -1 -3],[ 1 4 1 2 0 -1 -2],[ 2 2 0 1 1 0 0],[ 3 4 1 3 2 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-1,-1,1,2,3,0,1,4,2,4,0,1,0,1,2,1,3,1,2,0] |
Phi over symmetry |
[-4,-1,-1,1,2,3,0,1,4,2,4,0,1,0,1,2,1,3,1,2,0] |
Phi of -K |
[-3,-2,-1,1,1,4,1,0,1,3,3,0,2,3,4,0,1,1,0,2,3] |
Phi of K* |
[-4,-1,-1,1,2,3,2,3,1,4,3,0,0,2,1,1,3,3,0,0,1] |
Phi of -K* |
[-3,-2,-1,1,1,4,0,2,1,3,4,1,0,1,2,1,2,4,0,0,1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^4+t^3+t^2-t |
Normalized Jones-Krushkal polynomial |
4z^2+25z+35 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+25w^2z+35w |
Inner characteristic polynomial |
t^6+58t^4+24t^2+1 |
Outer characteristic polynomial |
t^7+90t^5+97t^3+7t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 12*K1**2 - 6*K1*K2 - 2*K1*K3 + 5*K2 + 2*K3 + 6 |
2-strand cable arrow polynomial |
-320*K1**4*K2**2 + 1216*K1**4*K2 - 3616*K1**4 + 832*K1**3*K2*K3 + 32*K1**3*K3*K4 - 512*K1**3*K3 - 256*K1**2*K2**4 + 1344*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 192*K1**2*K2**2*K4 - 8688*K1**2*K2**2 + 192*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 928*K1**2*K2*K4 + 10280*K1**2*K2 - 1216*K1**2*K3**2 - 32*K1**2*K3*K5 - 160*K1**2*K4**2 - 5644*K1**2 + 1280*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 1824*K1*K2**2*K3 - 608*K1*K2**2*K5 + 64*K1*K2*K3**3 - 416*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 10256*K1*K2*K3 - 32*K1*K2*K4*K5 + 1904*K1*K3*K4 + 192*K1*K4*K5 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 288*K2**4*K4 - 2576*K2**4 + 96*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 - 1776*K2**2*K3**2 - 440*K2**2*K4**2 + 2816*K2**2*K4 - 48*K2**2*K5**2 - 8*K2**2*K6**2 - 4704*K2**2 - 64*K2*K3**2*K4 + 1376*K2*K3*K5 + 280*K2*K4*K6 + 8*K2*K5*K7 - 64*K3**4 - 32*K3**2*K4**2 + 96*K3**2*K6 - 2880*K3**2 + 32*K3*K4*K7 - 962*K4**2 - 236*K5**2 - 72*K6**2 - 8*K7**2 + 5472 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{4, 6}, {3, 5}, {1, 2}]] |
If K is slice |
False |