Gauss code |
O1O2O3O4O5U3O6U1U6U5U4U2 |
R3 orbit |
{'O1O2O3O4O5U3O6U1U6U5U4U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U4U2U1U6U5O6U3 |
Gauss code of K* |
O1O2O3O4O5U1U5U6U4U3O6U2 |
Gauss code of -K* |
O1O2O3O4O5U4O6U3U2U6U1U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 1 -2 2 2 1],[ 4 0 4 0 4 3 1],[-1 -4 0 -2 1 1 0],[ 2 0 2 0 2 1 0],[-2 -4 -1 -2 0 0 0],[-2 -3 -1 -1 0 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 2 2 1 1 -2 -4],[-2 0 0 0 -1 -1 -3],[-2 0 0 0 -1 -2 -4],[-1 0 0 0 0 0 -1],[-1 1 1 0 0 -2 -4],[ 2 1 2 0 2 0 0],[ 4 3 4 1 4 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,-1,2,4,0,0,1,1,3,0,1,2,4,0,0,1,2,4,0] |
Phi over symmetry |
[-4,-2,1,1,2,2,0,1,4,3,4,0,2,1,2,0,0,0,1,1,0] |
Phi of -K |
[-4,-2,1,1,2,2,2,1,4,2,3,1,3,2,3,0,0,0,1,1,0] |
Phi of K* |
[-2,-2,-1,-1,2,4,0,0,1,2,2,0,1,3,3,0,1,1,3,4,2] |
Phi of -K* |
[-4,-2,1,1,2,2,0,1,4,3,4,0,2,1,2,0,0,0,1,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^2-2t |
Normalized Jones-Krushkal polynomial |
9z^2+30z+25 |
Enhanced Jones-Krushkal polynomial |
9w^3z^2+30w^2z+25w |
Inner characteristic polynomial |
t^6+53t^4+21t^2+1 |
Outer characteristic polynomial |
t^7+83t^5+64t^3+4t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 4*K1*K2 - 2*K1*K3 - K1 - K2 + K3 |
2-strand cable arrow polynomial |
2016*K1**4*K2 - 3616*K1**4 + 1440*K1**3*K2*K3 - 1216*K1**3*K3 - 128*K1**2*K2**4 + 1280*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 7344*K1**2*K2**2 - 1600*K1**2*K2*K4 + 7728*K1**2*K2 - 1504*K1**2*K3**2 - 128*K1**2*K4**2 - 3640*K1**2 + 832*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 1472*K1*K2**2*K3 - 480*K1*K2**2*K5 - 544*K1*K2*K3*K4 + 7776*K1*K2*K3 - 128*K1*K2*K4*K5 + 2312*K1*K3*K4 + 400*K1*K4*K5 + 16*K1*K5*K6 - 32*K2**6 - 32*K2**4*K4**2 + 192*K2**4*K4 - 1504*K2**4 + 96*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 - 976*K2**2*K3**2 - 384*K2**2*K4**2 + 2176*K2**2*K4 - 96*K2**2*K5**2 - 8*K2**2*K6**2 - 3366*K2**2 - 64*K2*K3**2*K4 + 1096*K2*K3*K5 + 336*K2*K4*K6 + 24*K2*K5*K7 - 2100*K3**2 - 1094*K4**2 - 332*K5**2 - 66*K6**2 + 3812 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {5}, {1, 4}, {3}], [{4, 6}, {3, 5}, {1, 2}]] |
If K is slice |
False |