Min(phi) over symmetries of the knot is: [-4,0,1,3,2,2,3,1,2,1] |
Flat knots (up to 7 crossings) with same phi are :['6.210'] |
Arrow polynomial of the knot is: 4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 6*K1*K2 - 2*K1*K3 + 2*K2 + 2*K3 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.91', '6.202', '6.210'] |
Outer characteristic polynomial of the knot is: t^5+49t^3+11t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.210'] |
2-strand cable arrow polynomial of the knot is: -128*K1**6 + 256*K1**4*K2**3 - 768*K1**4*K2**2 + 992*K1**4*K2 - 1008*K1**4 + 160*K1**3*K2*K3 - 384*K1**2*K2**4 + 704*K1**2*K2**3 - 1808*K1**2*K2**2 + 1752*K1**2*K2 - 80*K1**2*K3**2 - 32*K1**2*K4**2 - 968*K1**2 + 288*K1*K2**3*K3 + 1272*K1*K2*K3 + 248*K1*K3*K4 + 136*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 192*K2**4*K4 - 664*K2**4 + 128*K2**3*K3*K5 + 32*K2**3*K4*K6 - 320*K2**2*K3**2 - 216*K2**2*K4**2 + 440*K2**2*K4 - 80*K2**2*K5**2 - 8*K2**2*K6**2 - 712*K2**2 + 312*K2*K3*K5 + 120*K2*K4*K6 + 16*K2*K5*K7 - 480*K3**2 - 332*K4**2 - 168*K5**2 - 40*K6**2 + 1250 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.210'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11033', 'vk6.11111', 'vk6.12199', 'vk6.12306', 'vk6.14100', 'vk6.14101', 'vk6.14305', 'vk6.14306', 'vk6.15535', 'vk6.15536', 'vk6.16023', 'vk6.16024', 'vk6.16273', 'vk6.22572', 'vk6.22576', 'vk6.22721', 'vk6.22820', 'vk6.26110', 'vk6.26531', 'vk6.30602', 'vk6.30697', 'vk6.34053', 'vk6.34105', 'vk6.34526', 'vk6.34551', 'vk6.34555', 'vk6.38115', 'vk6.38140', 'vk6.42253', 'vk6.44637', 'vk6.44764', 'vk6.51842', 'vk6.54067', 'vk6.54521', 'vk6.54553', 'vk6.56584', 'vk6.56638', 'vk6.59006', 'vk6.64519', 'vk6.64520'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U2O6U4U6U3U1U5 |
R3 orbit | {'O1O2O3O4O5U2O6U4U6U3U1U5', 'O1O2O3O4O5U2U3O6U4U6U1U5'} |
R3 orbit length | 2 |
Gauss code of -K | O1O2O3O4O5U1U5U3U6U2O6U4 |
Gauss code of K* | O1O2O3O4O5U4U6U3U1U5O6U2 |
Gauss code of -K* | O1O2O3O4O5U4O6U1U5U3U6U2 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 -3 0 -1 4 1],[ 1 0 -2 1 0 4 1],[ 3 2 0 2 1 3 1],[ 0 -1 -2 0 -1 2 1],[ 1 0 -1 1 0 2 1],[-4 -4 -3 -2 -2 0 0],[-1 -1 -1 -1 -1 0 0]] |
Primitive based matrix | [[ 0 4 0 -1 -3],[-4 0 -2 -2 -3],[ 0 2 0 -1 -2],[ 1 2 1 0 -1],[ 3 3 2 1 0]] |
If based matrix primitive | False |
Phi of primitive based matrix | [-4,0,1,3,2,2,3,1,2,1] |
Phi over symmetry | [-4,0,1,3,2,2,3,1,2,1] |
Phi of -K | [-3,-1,0,4,1,1,4,0,3,2] |
Phi of K* | [-4,0,1,3,2,3,4,0,1,1] |
Phi of -K* | [-3,-1,0,4,1,2,3,1,2,2] |
Symmetry type of based matrix | c |
u-polynomial | -t^4+t^3+t |
Normalized Jones-Krushkal polynomial | 9z+19 |
Enhanced Jones-Krushkal polynomial | -4w^3z+13w^2z+19w |
Inner characteristic polynomial | t^4+23t^2+1 |
Outer characteristic polynomial | t^5+49t^3+11t |
Flat arrow polynomial | 4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 6*K1*K2 - 2*K1*K3 + 2*K2 + 2*K3 + 3 |
2-strand cable arrow polynomial | -128*K1**6 + 256*K1**4*K2**3 - 768*K1**4*K2**2 + 992*K1**4*K2 - 1008*K1**4 + 160*K1**3*K2*K3 - 384*K1**2*K2**4 + 704*K1**2*K2**3 - 1808*K1**2*K2**2 + 1752*K1**2*K2 - 80*K1**2*K3**2 - 32*K1**2*K4**2 - 968*K1**2 + 288*K1*K2**3*K3 + 1272*K1*K2*K3 + 248*K1*K3*K4 + 136*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 192*K2**4*K4 - 664*K2**4 + 128*K2**3*K3*K5 + 32*K2**3*K4*K6 - 320*K2**2*K3**2 - 216*K2**2*K4**2 + 440*K2**2*K4 - 80*K2**2*K5**2 - 8*K2**2*K6**2 - 712*K2**2 + 312*K2*K3*K5 + 120*K2*K4*K6 + 16*K2*K5*K7 - 480*K3**2 - 332*K4**2 - 168*K5**2 - 40*K6**2 + 1250 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {4}, {1, 3}, {2}]] |
If K is slice | False |