Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.209

Min(phi) over symmetries of the knot is: [-3,-2,-1,1,2,3,0,1,3,2,4,1,2,1,2,1,1,2,2,2,0]
Flat knots (up to 7 crossings) with same phi are :['6.209']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.209', '6.231', '6.391', '6.419', '6.600', '6.661', '6.744', '6.812', '6.826', '6.1114', '6.1125', '6.1202', '6.1275', '6.1292', '6.1305', '6.1322', '6.1365', '6.1481', '6.1483', '6.1497', '6.1543', '6.1549', '6.1572', '6.1577', '6.1580', '6.1594', '6.1641', '6.1658', '6.1683', '6.1753', '6.1830', '6.1907', '6.1928']
Outer characteristic polynomial of the knot is: t^7+74t^5+47t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.209']
2-strand cable arrow polynomial of the knot is: -16*K1**4 + 32*K1**3*K2*K3 - 64*K1**3*K3 - 192*K1**2*K2**4 + 512*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5040*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 672*K1**2*K2*K4 + 6712*K1**2*K2 - 80*K1**2*K3**2 - 144*K1**2*K4**2 - 6088*K1**2 + 288*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 896*K1*K2**2*K3 - 160*K1*K2**2*K5 - 384*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 6696*K1*K2*K3 + 1248*K1*K3*K4 + 232*K1*K4*K5 + 16*K1*K5*K6 - 32*K2**6 + 32*K2**4*K4 - 880*K2**4 - 464*K2**2*K3**2 - 304*K2**2*K4**2 + 2248*K2**2*K4 - 4742*K2**2 + 456*K2*K3*K5 + 192*K2*K4*K6 + 8*K3**2*K6 - 2172*K3**2 - 1124*K4**2 - 116*K5**2 - 42*K6**2 + 4650
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.209']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11063', 'vk6.11141', 'vk6.12225', 'vk6.12332', 'vk6.18343', 'vk6.18682', 'vk6.24781', 'vk6.25240', 'vk6.30634', 'vk6.30729', 'vk6.31866', 'vk6.31936', 'vk6.36963', 'vk6.37422', 'vk6.44150', 'vk6.44472', 'vk6.51864', 'vk6.51909', 'vk6.52727', 'vk6.52834', 'vk6.56119', 'vk6.56342', 'vk6.60636', 'vk6.60973', 'vk6.63521', 'vk6.63565', 'vk6.63999', 'vk6.64043', 'vk6.65765', 'vk6.66028', 'vk6.68770', 'vk6.68980']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U2O6U4U6U1U5U3
R3 orbit {'O1O2O3O4O5U2O6U4U6U1U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U3U1U5U6U2O6U4
Gauss code of K* O1O2O3O4O5U3U6U5U1U4O6U2
Gauss code of -K* O1O2O3O4O5U4O6U2U5U1U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -3 2 -1 3 1],[ 2 0 -1 3 0 3 1],[ 3 1 0 3 1 2 1],[-2 -3 -3 0 -2 1 1],[ 1 0 -1 2 0 2 1],[-3 -3 -2 -1 -2 0 0],[-1 -1 -1 -1 -1 0 0]]
Primitive based matrix [[ 0 3 2 1 -1 -2 -3],[-3 0 -1 0 -2 -3 -2],[-2 1 0 1 -2 -3 -3],[-1 0 -1 0 -1 -1 -1],[ 1 2 2 1 0 0 -1],[ 2 3 3 1 0 0 -1],[ 3 2 3 1 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,-1,1,2,3,1,0,2,3,2,-1,2,3,3,1,1,1,0,1,1]
Phi over symmetry [-3,-2,-1,1,2,3,0,1,3,2,4,1,2,1,2,1,1,2,2,2,0]
Phi of -K [-3,-2,-1,1,2,3,0,1,3,2,4,1,2,1,2,1,1,2,2,2,0]
Phi of K* [-3,-2,-1,1,2,3,0,2,2,2,4,2,1,1,2,1,2,3,1,1,0]
Phi of -K* [-3,-2,-1,1,2,3,1,1,1,3,2,0,1,3,3,1,2,2,-1,0,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 8z^2+28z+25
Enhanced Jones-Krushkal polynomial 8w^3z^2+28w^2z+25w
Inner characteristic polynomial t^6+46t^4+17t^2
Outer characteristic polynomial t^7+74t^5+47t^3+6t
Flat arrow polynomial 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -16*K1**4 + 32*K1**3*K2*K3 - 64*K1**3*K3 - 192*K1**2*K2**4 + 512*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5040*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 672*K1**2*K2*K4 + 6712*K1**2*K2 - 80*K1**2*K3**2 - 144*K1**2*K4**2 - 6088*K1**2 + 288*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 896*K1*K2**2*K3 - 160*K1*K2**2*K5 - 384*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 6696*K1*K2*K3 + 1248*K1*K3*K4 + 232*K1*K4*K5 + 16*K1*K5*K6 - 32*K2**6 + 32*K2**4*K4 - 880*K2**4 - 464*K2**2*K3**2 - 304*K2**2*K4**2 + 2248*K2**2*K4 - 4742*K2**2 + 456*K2*K3*K5 + 192*K2*K4*K6 + 8*K3**2*K6 - 2172*K3**2 - 1124*K4**2 - 116*K5**2 - 42*K6**2 + 4650
Genus of based matrix 0
Fillings of based matrix [[{4, 6}, {2, 5}, {1, 3}]]
If K is slice True
Contact