Gauss code |
O1O2O3O4O5U2O6U4U6U1U3U5 |
R3 orbit |
{'O1O2O3O4O5U2O6U4U6U1U3U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U1U3U5U6U2O6U4 |
Gauss code of K* |
O1O2O3O4O5U3U6U4U1U5O6U2 |
Gauss code of -K* |
O1O2O3O4O5U4O6U1U5U2U6U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -3 1 -1 4 1],[ 2 0 -1 2 0 4 1],[ 3 1 0 2 1 3 1],[-1 -2 -2 0 -1 2 1],[ 1 0 -1 1 0 2 1],[-4 -4 -3 -2 -2 0 0],[-1 -1 -1 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 4 1 1 -1 -2 -3],[-4 0 0 -2 -2 -4 -3],[-1 0 0 -1 -1 -1 -1],[-1 2 1 0 -1 -2 -2],[ 1 2 1 1 0 0 -1],[ 2 4 1 2 0 0 -1],[ 3 3 1 2 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-1,-1,1,2,3,0,2,2,4,3,1,1,1,1,1,2,2,0,1,1] |
Phi over symmetry |
[-4,-1,-1,1,2,3,0,2,2,4,3,1,1,1,1,1,2,2,0,1,1] |
Phi of -K |
[-3,-2,-1,1,1,4,0,1,2,3,4,1,1,2,2,1,1,3,-1,1,3] |
Phi of K* |
[-4,-1,-1,1,2,3,1,3,3,2,4,1,1,1,2,1,2,3,1,1,0] |
Phi of -K* |
[-3,-2,-1,1,1,4,1,1,1,2,3,0,1,2,4,1,1,2,-1,0,2] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^4+t^3+t^2-t |
Normalized Jones-Krushkal polynomial |
5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+26w^2z+33w |
Inner characteristic polynomial |
t^6+48t^4+19t^2+1 |
Outer characteristic polynomial |
t^7+80t^5+44t^3+5t |
Flat arrow polynomial |
-6*K1**2 - 6*K1*K2 + 3*K1 - 2*K2**2 + 3*K2 + 3*K3 + K4 + 5 |
2-strand cable arrow polynomial |
832*K1**4*K2 - 2384*K1**4 + 864*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1504*K1**3*K3 + 288*K1**2*K2**2*K4 - 3600*K1**2*K2**2 - 832*K1**2*K2*K4 + 7720*K1**2*K2 - 2224*K1**2*K3**2 - 256*K1**2*K4**2 - 6520*K1**2 + 192*K1*K2**3*K3 - 864*K1*K2**2*K3 - 384*K1*K2**2*K5 + 224*K1*K2*K3**3 + 96*K1*K2*K3*K4**2 - 832*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 8984*K1*K2*K3 + 3320*K1*K3*K4 + 728*K1*K4*K5 - 216*K2**4 - 736*K2**2*K3**2 - 152*K2**2*K4**2 + 1416*K2**2*K4 - 5346*K2**2 - 160*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 1208*K2*K3*K5 + 144*K2*K4*K6 - 352*K3**4 - 144*K3**2*K4**2 + 296*K3**2*K6 - 3444*K3**2 + 72*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1422*K4**2 - 488*K5**2 - 70*K6**2 - 4*K7**2 - 2*K8**2 + 5646 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |