Gauss code |
O1O2U1U3O4O5U6U5O3O6U2U4 |
R3 orbit |
{'O1O2U1U3O4O5U6U5O3O6U2U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2U3U1O3O4U2U5O6O5U4U6 |
Gauss code of K* |
O1O2U3U1O3O4U2U5O6O5U4U6 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 0 0 0 1 0],[ 1 0 1 1 1 0 1],[ 0 -1 0 -1 0 1 0],[ 0 -1 1 0 1 1 0],[ 0 -1 0 -1 0 1 -1],[-1 0 -1 -1 -1 0 -1],[ 0 -1 0 0 1 1 0]] |
Primitive based matrix |
[[ 0 1 0 0 0 0 -1],[-1 0 -1 -1 -1 -1 0],[ 0 1 0 1 1 0 -1],[ 0 1 -1 0 0 0 -1],[ 0 1 -1 0 0 -1 -1],[ 0 1 0 0 1 0 -1],[ 1 0 1 1 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,0,0,0,0,1,1,1,1,1,0,-1,-1,0,1,0,0,1,1,1,1] |
Phi over symmetry |
[-1,0,0,0,0,1,0,0,0,0,2,-1,-1,0,0,0,0,0,1,0,0] |
Phi of -K |
[-1,0,0,0,0,1,0,0,0,0,2,-1,-1,0,0,0,0,0,1,0,0] |
Phi of K* |
[-1,0,0,0,0,1,0,0,0,0,2,-1,-1,0,0,0,0,0,1,0,0] |
Phi of -K* |
[-1,0,0,0,0,1,1,1,1,1,0,-1,-1,0,1,0,0,1,1,1,1] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
21z+43 |
Enhanced Jones-Krushkal polynomial |
21w^2z+43w |
Inner characteristic polynomial |
t^6+11t^4+5t^2 |
Outer characteristic polynomial |
t^7+13t^5+11t^3+2t |
Flat arrow polynomial |
-16*K1**2 + 8*K2 + 9 |
2-strand cable arrow polynomial |
-1024*K1**6 - 384*K1**4*K2**2 + 2304*K1**4*K2 - 8704*K1**4 + 640*K1**3*K2*K3 - 576*K1**3*K3 - 4704*K1**2*K2**2 - 64*K1**2*K2*K4 + 12000*K1**2*K2 - 320*K1**2*K3**2 - 2384*K1**2 + 4048*K1*K2*K3 + 96*K1*K3*K4 - 256*K2**4 + 256*K2**2*K4 - 3848*K2**2 - 928*K3**2 - 72*K4**2 + 3918 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}]] |
If K is slice |
True |