Min(phi) over symmetries of the knot is: [-1,-1,0,0,1,1,-1,0,1,1,1,0,0,1,1,-1,1,1,0,1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.2078'] |
Arrow polynomial of the knot is: 8*K1**3 - 12*K1**2 - 8*K1*K2 - 2*K1 + 6*K2 + 2*K3 + 7 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.218', '6.554', '6.929', '6.932', '6.1014', '6.1024', '6.1068', '6.1526', '6.1664', '6.1676', '6.1755', '6.1763', '6.2065', '6.2078'] |
Outer characteristic polynomial of the knot is: t^7+14t^5+35t^3+4t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.2078'] |
2-strand cable arrow polynomial of the knot is: 256*K1**4*K2**3 - 1344*K1**4*K2**2 + 2592*K1**4*K2 - 3664*K1**4 - 256*K1**3*K2**2*K3 + 1056*K1**3*K2*K3 - 608*K1**3*K3 - 512*K1**2*K2**4 + 3840*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 11264*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 800*K1**2*K2*K4 + 10848*K1**2*K2 - 368*K1**2*K3**2 - 5288*K1**2 + 1088*K1*K2**3*K3 - 2720*K1*K2**2*K3 - 352*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 8752*K1*K2*K3 + 928*K1*K3*K4 + 144*K1*K4*K5 - 64*K2**6 + 192*K2**4*K4 - 3104*K2**4 - 64*K2**3*K6 - 768*K2**2*K3**2 - 128*K2**2*K4**2 + 2872*K2**2*K4 - 3796*K2**2 + 656*K2*K3*K5 + 80*K2*K4*K6 - 1952*K3**2 - 696*K4**2 - 168*K5**2 - 12*K6**2 + 4718 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.2078'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.19942', 'vk6.20055', 'vk6.21187', 'vk6.21338', 'vk6.26907', 'vk6.27116', 'vk6.28661', 'vk6.28807', 'vk6.38331', 'vk6.38513', 'vk6.40471', 'vk6.40713', 'vk6.45204', 'vk6.45409', 'vk6.47027', 'vk6.47155', 'vk6.56731', 'vk6.56869', 'vk6.57831', 'vk6.58007', 'vk6.61156', 'vk6.61394', 'vk6.62397', 'vk6.62554', 'vk6.66430', 'vk6.66576', 'vk6.67201', 'vk6.67366', 'vk6.69083', 'vk6.69224', 'vk6.69864', 'vk6.69965'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2U1U3O4O5U6U2O3O6U4U5 |
R3 orbit | {'O1O2U1U3O4O5U6U2O3O6U4U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2U3U1O4O5U2U6O3O6U4U5 |
Gauss code of K* | O1O2U3U4O3O5U1U2O6O4U5U6 |
Gauss code of -K* | O1O2U3U4O5O3U1U2O4O6U5U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 1 0 -1 1 0],[ 1 0 1 0 1 1 0],[-1 -1 0 -1 -1 0 0],[ 0 0 1 0 0 1 -1],[ 1 -1 1 0 0 1 1],[-1 -1 0 -1 -1 0 -1],[ 0 0 0 1 -1 1 0]] |
Primitive based matrix | [[ 0 1 1 0 0 -1 -1],[-1 0 0 0 -1 -1 -1],[-1 0 0 -1 -1 -1 -1],[ 0 0 1 0 1 0 -1],[ 0 1 1 -1 0 0 0],[ 1 1 1 0 0 0 1],[ 1 1 1 1 0 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,0,0,1,1,0,0,1,1,1,1,1,1,1,-1,0,1,0,0,-1] |
Phi over symmetry | [-1,-1,0,0,1,1,-1,0,1,1,1,0,0,1,1,-1,1,1,0,1,0] |
Phi of -K | [-1,-1,0,0,1,1,-1,1,1,1,1,0,1,1,1,-1,0,1,0,0,0] |
Phi of K* | [-1,-1,0,0,1,1,0,0,0,1,1,0,1,1,1,-1,1,1,0,1,-1] |
Phi of -K* | [-1,-1,0,0,1,1,-1,0,1,1,1,0,0,1,1,-1,1,1,0,1,0] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 6z^2+27z+31 |
Enhanced Jones-Krushkal polynomial | 6w^3z^2+27w^2z+31w |
Inner characteristic polynomial | t^6+10t^4+21t^2+1 |
Outer characteristic polynomial | t^7+14t^5+35t^3+4t |
Flat arrow polynomial | 8*K1**3 - 12*K1**2 - 8*K1*K2 - 2*K1 + 6*K2 + 2*K3 + 7 |
2-strand cable arrow polynomial | 256*K1**4*K2**3 - 1344*K1**4*K2**2 + 2592*K1**4*K2 - 3664*K1**4 - 256*K1**3*K2**2*K3 + 1056*K1**3*K2*K3 - 608*K1**3*K3 - 512*K1**2*K2**4 + 3840*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 11264*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 800*K1**2*K2*K4 + 10848*K1**2*K2 - 368*K1**2*K3**2 - 5288*K1**2 + 1088*K1*K2**3*K3 - 2720*K1*K2**2*K3 - 352*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 8752*K1*K2*K3 + 928*K1*K3*K4 + 144*K1*K4*K5 - 64*K2**6 + 192*K2**4*K4 - 3104*K2**4 - 64*K2**3*K6 - 768*K2**2*K3**2 - 128*K2**2*K4**2 + 2872*K2**2*K4 - 3796*K2**2 + 656*K2*K3*K5 + 80*K2*K4*K6 - 1952*K3**2 - 696*K4**2 - 168*K5**2 - 12*K6**2 + 4718 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}]] |
If K is slice | False |