Gauss code |
O1O2U1U3O4O3U5U4O6O5U2U6 |
R3 orbit |
{'O1O2U1U3O4O3U5U4O6O5U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2U3U1O3O4U5U4O6O5U2U6 |
Gauss code of -K* |
O1O2U3U1O3O4U5U4O6O5U2U6 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 0 1 0 0 0],[ 1 0 1 1 0 1 1],[ 0 -1 0 1 0 -1 0],[-1 -1 -1 0 0 0 0],[ 0 0 0 0 0 0 -1],[ 0 -1 1 0 0 0 0],[ 0 -1 0 0 1 0 0]] |
Primitive based matrix |
[[ 0 1 0 0 0 0 -1],[-1 0 0 0 0 -1 -1],[ 0 0 0 1 0 0 -1],[ 0 0 -1 0 0 0 0],[ 0 0 0 0 0 1 -1],[ 0 1 0 0 -1 0 -1],[ 1 1 1 0 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,0,0,0,0,1,0,0,0,1,1,-1,0,0,1,0,0,0,-1,1,1] |
Phi over symmetry |
[-1,0,0,0,0,1,0,0,0,1,1,-1,0,0,1,0,0,0,-1,1,1] |
Phi of -K |
[-1,0,0,0,0,1,0,0,0,1,1,-1,0,0,1,0,0,0,-1,1,1] |
Phi of K* |
[-1,0,0,0,0,1,0,1,1,1,1,-1,0,0,0,0,0,0,-1,1,0] |
Phi of -K* |
[-1,0,0,0,0,1,0,1,1,1,1,-1,0,0,0,0,0,0,-1,1,0] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
21z+43 |
Enhanced Jones-Krushkal polynomial |
21w^2z+43w |
Inner characteristic polynomial |
t^6+7t^4+11t^2+4 |
Outer characteristic polynomial |
t^7+9t^5+17t^3+8t |
Flat arrow polynomial |
-20*K1**2 + 10*K2 + 11 |
2-strand cable arrow polynomial |
-512*K1**4*K2**2 + 2304*K1**4*K2 - 7168*K1**4 + 896*K1**3*K2*K3 - 1216*K1**3*K3 + 128*K1**2*K2**3 - 8800*K1**2*K2**2 - 320*K1**2*K2*K4 + 14960*K1**2*K2 - 384*K1**2*K3**2 - 6224*K1**2 - 256*K1*K2**2*K3 + 8048*K1*K2*K3 + 352*K1*K3*K4 - 368*K2**4 + 448*K2**2*K4 - 5504*K2**2 - 1808*K3**2 - 164*K4**2 + 5586 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {4}, {1, 3}, {2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice |
False |