Gauss code |
O1O2U1U2O3O4U3U5O6O5U4U6 |
R3 orbit |
{'O1O2U1U2O3O4U3U5O6O5U4U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2U1U3O4O3U5U6O5O6U2U4 |
Gauss code of K* |
O1O2U3U4O3O4U5U1O5O6U2U6 |
Gauss code of -K* |
O1O2U1U2O3O4U5U3O5O6U4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 1 -1 0 1 0],[ 1 0 1 0 0 1 0],[-1 -1 0 0 0 -1 0],[ 1 0 0 0 1 1 1],[ 0 0 0 -1 0 0 0],[-1 -1 1 -1 0 0 0],[ 0 0 0 -1 0 0 0]] |
Primitive based matrix |
[[ 0 1 1 0 0 -1 -1],[-1 0 1 0 0 -1 -1],[-1 -1 0 0 0 0 -1],[ 0 0 0 0 0 -1 0],[ 0 0 0 0 0 -1 0],[ 1 1 0 1 1 0 0],[ 1 1 1 0 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,0,0,1,1,-1,0,0,1,1,0,0,0,1,0,1,0,1,0,0] |
Phi over symmetry |
[-1,-1,0,0,1,1,-1,0,0,1,1,0,0,0,1,0,1,0,1,0,0] |
Phi of -K |
[-1,-1,0,0,1,1,0,0,0,1,2,1,1,1,1,0,1,1,1,1,-1] |
Phi of K* |
[-1,-1,0,0,1,1,-1,1,1,1,2,1,1,1,1,0,1,0,1,0,0] |
Phi of -K* |
[-1,-1,0,0,1,1,0,0,0,1,1,1,1,0,1,0,0,0,0,0,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+26w^2z+33w |
Inner characteristic polynomial |
t^6+6t^4+7t^2 |
Outer characteristic polynomial |
t^7+10t^5+15t^3+2t |
Flat arrow polynomial |
8*K1**3 - 12*K1**2 - 8*K1*K2 - 2*K1 + 6*K2 + 2*K3 + 7 |
2-strand cable arrow polynomial |
-1792*K1**6 - 3136*K1**4*K2**2 + 6624*K1**4*K2 - 7632*K1**4 + 2656*K1**3*K2*K3 - 1184*K1**3*K3 - 1664*K1**2*K2**4 + 5664*K1**2*K2**3 + 576*K1**2*K2**2*K4 - 14832*K1**2*K2**2 - 1312*K1**2*K2*K4 + 11728*K1**2*K2 - 848*K1**2*K3**2 - 112*K1**2*K4**2 - 808*K1**2 + 2080*K1*K2**3*K3 - 2688*K1*K2**2*K3 - 448*K1*K2**2*K5 - 384*K1*K2*K3*K4 + 8016*K1*K2*K3 + 648*K1*K3*K4 + 104*K1*K4*K5 - 192*K2**6 + 320*K2**4*K4 - 3104*K2**4 - 64*K2**3*K6 - 656*K2**2*K3**2 - 128*K2**2*K4**2 + 2104*K2**2*K4 - 1564*K2**2 + 304*K2*K3*K5 + 48*K2*K4*K6 - 872*K3**2 - 216*K4**2 - 32*K5**2 - 4*K6**2 + 2798 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {3, 5}, {4}, {1, 2}]] |
If K is slice |
False |