Min(phi) over symmetries of the knot is: [-1,-1,-1,1,1,1,-1,0,0,1,2,-1,1,1,0,0,0,1,0,-1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.2050'] |
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063'] |
Outer characteristic polynomial of the knot is: t^7+17t^5+54t^3 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.2050'] |
2-strand cable arrow polynomial of the knot is: -512*K1**6 - 256*K1**4*K2**2 + 1024*K1**4*K2 - 2880*K1**4 + 416*K1**3*K2*K3 - 1920*K1**2*K2**2 + 4016*K1**2*K2 - 576*K1**2*K3**2 - 1184*K1**2 + 2176*K1*K2*K3 + 408*K1*K3*K4 - 64*K2**4 + 64*K2**2*K4 - 1672*K2**2 - 712*K3**2 - 112*K4**2 + 1782 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.2050'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10946', 'vk6.10958', 'vk6.10979', 'vk6.10991', 'vk6.12116', 'vk6.12128', 'vk6.12149', 'vk6.12161', 'vk6.13784', 'vk6.13798', 'vk6.14216', 'vk6.14229', 'vk6.14665', 'vk6.14676', 'vk6.14859', 'vk6.14869', 'vk6.15823', 'vk6.15836', 'vk6.31824', 'vk6.31828', 'vk6.33614', 'vk6.33636', 'vk6.33647', 'vk6.33669', 'vk6.51776', 'vk6.51804', 'vk6.52641', 'vk6.52669', 'vk6.53810', 'vk6.53824', 'vk6.54234', 'vk6.54247'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2U1O3U4U3O5O6U5U2O4U6 |
R3 orbit | {'O1O2U1O3U4U3O5O6U5U2O4U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2U3O4U1U5O3O5U6U4O6U2 |
Gauss code of K* | O1O2U3O4U5U2O5U6O3O6U1U4 |
Gauss code of -K* | O1O2U1O3U4U3O5U2O4O6U5U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 1 1 -1 -1 1],[ 1 0 1 0 0 0 1],[-1 -1 0 0 -2 0 1],[-1 0 0 0 -1 0 -1],[ 1 0 2 1 0 -1 0],[ 1 0 0 0 1 0 1],[-1 -1 -1 1 0 -1 0]] |
Primitive based matrix | [[ 0 1 1 1 -1 -1 -1],[-1 0 1 0 0 -1 -2],[-1 -1 0 1 -1 -1 0],[-1 0 -1 0 0 0 -1],[ 1 0 1 0 0 0 1],[ 1 1 1 0 0 0 0],[ 1 2 0 1 -1 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,-1,1,1,1,-1,0,0,1,2,-1,1,1,0,0,0,1,0,-1,0] |
Phi over symmetry | [-1,-1,-1,1,1,1,-1,0,0,1,2,-1,1,1,0,0,0,1,0,-1,0] |
Phi of -K | [-1,-1,-1,1,1,1,-1,0,1,2,2,0,2,0,1,1,1,2,1,-1,0] |
Phi of K* | [-1,-1,-1,1,1,1,-1,0,1,2,2,-1,2,1,1,0,1,2,0,-1,0] |
Phi of -K* | [-1,-1,-1,1,1,1,-1,0,0,1,2,0,1,0,0,1,0,1,1,-1,0] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 16z+33 |
Enhanced Jones-Krushkal polynomial | 16w^2z+33w |
Inner characteristic polynomial | t^6+11t^4+28t^2 |
Outer characteristic polynomial | t^7+17t^5+54t^3 |
Flat arrow polynomial | -8*K1**2 + 4*K2 + 5 |
2-strand cable arrow polynomial | -512*K1**6 - 256*K1**4*K2**2 + 1024*K1**4*K2 - 2880*K1**4 + 416*K1**3*K2*K3 - 1920*K1**2*K2**2 + 4016*K1**2*K2 - 576*K1**2*K3**2 - 1184*K1**2 + 2176*K1*K2*K3 + 408*K1*K3*K4 - 64*K2**4 + 64*K2**2*K4 - 1672*K2**2 - 712*K3**2 - 112*K4**2 + 1782 |
Genus of based matrix | 0 |
Fillings of based matrix | [[{1, 6}, {3, 5}, {2, 4}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice | True |