Gauss code |
O1O2O3O4O5U2O6U4U1U6U5U3 |
R3 orbit |
{'O1O2O3O4O5U2U6U5U1U4O6U3', 'O1O2O3O4O5U2O6U4U1U6U5U3', 'O1O2O3O4U1O5U6U2U5U4O6U3'} |
R3 orbit length |
3 |
Gauss code of -K |
O1O2O3O4O5U3U1U6U5U2O6U4 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3O4O5U3O6U2U5U1U6U4 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -3 2 -1 3 2],[ 3 0 -1 4 1 4 2],[ 3 1 0 3 1 2 1],[-2 -4 -3 0 -2 1 1],[ 1 -1 -1 2 0 2 1],[-3 -4 -2 -1 -2 0 0],[-2 -2 -1 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 3 2 2 -1 -3 -3],[-3 0 0 -1 -2 -2 -4],[-2 0 0 -1 -1 -1 -2],[-2 1 1 0 -2 -3 -4],[ 1 2 1 2 0 -1 -1],[ 3 2 1 3 1 0 1],[ 3 4 2 4 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-2,1,3,3,0,1,2,2,4,1,1,1,2,2,3,4,1,1,-1] |
Phi over symmetry |
[-3,-3,-1,2,2,3,-1,1,2,4,4,1,1,3,2,1,2,2,-1,0,1] |
Phi of -K |
[-3,-3,-1,2,2,3,-1,1,2,4,4,1,1,3,2,1,2,2,-1,0,1] |
Phi of K* |
[-3,-2,-2,1,3,3,0,1,2,2,4,1,1,1,2,2,3,4,1,1,-1] |
Phi of -K* |
[-3,-3,-1,2,2,3,-1,1,2,4,4,1,1,3,2,1,2,2,-1,0,1] |
Symmetry type of based matrix |
+ |
u-polynomial |
t^3-2t^2+t |
Normalized Jones-Krushkal polynomial |
5z+11 |
Enhanced Jones-Krushkal polynomial |
-4w^3z+9w^2z+11w |
Inner characteristic polynomial |
t^6+64t^4+20t^2 |
Outer characteristic polynomial |
t^7+100t^5+52t^3 |
Flat arrow polynomial |
8*K1**3 - 4*K1**2 - 6*K1*K2 - 3*K1 + 2*K2 + K3 + 3 |
2-strand cable arrow polynomial |
-96*K1**4 + 128*K1**2*K2**3 - 768*K1**2*K2**2 + 1024*K1**2*K2 - 32*K1**2*K3**2 - 64*K1**2*K4**2 - 920*K1**2 + 64*K1*K2**3*K3 + 688*K1*K2*K3 + 240*K1*K3*K4 + 64*K1*K4*K5 + 16*K1*K5*K6 - 64*K2**6 + 64*K2**4*K4 - 528*K2**4 - 64*K2**2*K3**2 - 88*K2**2*K4**2 + 440*K2**2*K4 - 406*K2**2 + 64*K2*K3*K5 + 56*K2*K4*K6 - 296*K3**2 - 216*K4**2 - 48*K5**2 - 18*K6**2 + 758 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {5}, {4}, {1, 2}]] |
If K is slice |
False |