Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.2046

Min(phi) over symmetries of the knot is: [-1,-1,0,0,1,1,-1,0,0,1,2,0,0,1,1,-1,1,1,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.2046']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+16t^5+26t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.2046', '6.2047']
2-strand cable arrow polynomial of the knot is: -256*K1**6 - 384*K1**4*K2**2 + 2048*K1**4*K2 - 3968*K1**4 + 544*K1**3*K2*K3 - 1312*K1**3*K3 + 1152*K1**2*K2**3 - 7008*K1**2*K2**2 - 608*K1**2*K2*K4 + 10688*K1**2*K2 - 192*K1**2*K3**2 - 5656*K1**2 - 768*K1*K2**2*K3 + 6960*K1*K2*K3 + 408*K1*K3*K4 - 960*K2**4 + 992*K2**2*K4 - 4224*K2**2 - 1648*K3**2 - 256*K4**2 + 4446
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.2046']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11047', 'vk6.11125', 'vk6.12213', 'vk6.12320', 'vk6.16415', 'vk6.19232', 'vk6.19322', 'vk6.19525', 'vk6.19617', 'vk6.22719', 'vk6.22818', 'vk6.26044', 'vk6.26086', 'vk6.26426', 'vk6.26510', 'vk6.30616', 'vk6.30711', 'vk6.31922', 'vk6.34768', 'vk6.38107', 'vk6.38122', 'vk6.42386', 'vk6.44631', 'vk6.44740', 'vk6.51852', 'vk6.52717', 'vk6.52820', 'vk6.56585', 'vk6.56634', 'vk6.64714', 'vk6.66285', 'vk6.66298']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U1O3U4U5O4O6U3U2O5U6
R3 orbit {'O1O2U1O3U4U5O4O6U3U2O5U6'}
R3 orbit length 1
Gauss code of -K O1O2U3O4U1U5O3O6U4U6O5U2
Gauss code of K* O1O2U3O4U5U2O5U1O6O3U6U4
Gauss code of -K* O1O2U3O4U5U4O6U1O5O3U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 1 0 -1 0 1],[ 1 0 1 0 1 0 1],[-1 -1 0 0 -1 -1 1],[ 0 0 0 0 0 1 0],[ 1 -1 1 0 0 0 2],[ 0 0 1 -1 0 0 1],[-1 -1 -1 0 -2 -1 0]]
Primitive based matrix [[ 0 1 1 0 0 -1 -1],[-1 0 1 0 -1 -1 -1],[-1 -1 0 0 -1 -1 -2],[ 0 0 0 0 1 0 0],[ 0 1 1 -1 0 0 0],[ 1 1 1 0 0 0 1],[ 1 1 2 0 0 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,1,1,-1,0,1,1,1,0,1,1,2,-1,0,0,0,0,-1]
Phi over symmetry [-1,-1,0,0,1,1,-1,0,0,1,2,0,0,1,1,-1,1,1,0,0,1]
Phi of -K [-1,-1,0,0,1,1,-1,1,1,1,1,1,1,0,1,-1,1,1,0,0,1]
Phi of K* [-1,-1,0,0,1,1,-1,0,1,0,1,0,1,1,1,-1,1,1,1,1,-1]
Phi of -K* [-1,-1,0,0,1,1,-1,0,0,1,2,0,0,1,1,-1,1,1,0,0,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 4z^2+25z+35
Enhanced Jones-Krushkal polynomial 4w^3z^2+25w^2z+35w
Inner characteristic polynomial t^6+12t^4+12t^2
Outer characteristic polynomial t^7+16t^5+26t^3+7t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -256*K1**6 - 384*K1**4*K2**2 + 2048*K1**4*K2 - 3968*K1**4 + 544*K1**3*K2*K3 - 1312*K1**3*K3 + 1152*K1**2*K2**3 - 7008*K1**2*K2**2 - 608*K1**2*K2*K4 + 10688*K1**2*K2 - 192*K1**2*K3**2 - 5656*K1**2 - 768*K1*K2**2*K3 + 6960*K1*K2*K3 + 408*K1*K3*K4 - 960*K2**4 + 992*K2**2*K4 - 4224*K2**2 - 1648*K3**2 - 256*K4**2 + 4446
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact