Min(phi) over symmetries of the knot is: [-1,0,0,0,1,0,0,0,2,-1,-1,1,-1,1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.2038', '7.18603'] |
Arrow polynomial of the knot is: -4*K1**2 + 2*K2 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.5', '4.7', '4.10', '4.11', '6.142', '6.563', '6.606', '6.788', '6.892', '6.944', '6.949', '6.971', '6.1011', '6.1060', '6.1124', '6.1212', '6.1238', '6.1241', '6.1274', '6.1291', '6.1304', '6.1309', '6.1312', '6.1373', '6.1390', '6.1392', '6.1393', '6.1394', '6.1403', '6.1407', '6.1412', '6.1413', '6.1423', '6.1424', '6.1425', '6.1426', '6.1438', '6.1440', '6.1448', '6.1449', '6.1452', '6.1453', '6.1456', '6.1457', '6.1478', '6.1479', '6.1520', '6.1554', '6.1559', '6.1588', '6.1589', '6.1609', '6.1610', '6.1619', '6.1621', '6.1626', '6.1630', '6.1632', '6.1633', '6.1643', '6.1657', '6.1689', '6.1721', '6.1723', '6.1737', '6.1764', '6.1777', '6.1783', '6.1808', '6.1816', '6.1853', '6.1855', '6.1856', '6.1860', '6.1864', '6.1871', '6.1872', '6.1875', '6.1882', '6.1891', '6.1894', '6.1895', '6.1896', '6.1897', '6.1898', '6.1900', '6.1902', '6.1903', '6.1938', '6.1940', '6.1942', '6.1946', '6.1947', '6.1952', '6.1956', '6.1957', '6.1959', '6.1965', '6.1968', '6.1969', '6.1970', '6.1972', '6.1973', '6.1974', '6.2000', '6.2006', '6.2012', '6.2032', '6.2033', '6.2035', '6.2036', '6.2037', '6.2038', '6.2040', '6.2041', '6.2042', '6.2044', '6.2045', '6.2047', '6.2048', '6.2049', '6.2052', '6.2053', '6.2054', '6.2055', '6.2058', '6.2060', '6.2061', '6.2062', '6.2067', '6.2069', '6.2072', '6.2073', '6.2076', '6.2077', '6.2080'] |
Outer characteristic polynomial of the knot is: t^6+9t^4+12t^2 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.2038'] |
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 192*K1**4*K2 - 1472*K1**4 - 544*K1**2*K2**2 + 2032*K1**2*K2 - 436*K1**2 + 352*K1*K2*K3 - 48*K2**4 + 32*K2**2*K4 - 608*K2**2 - 60*K3**2 - 4*K4**2 + 626 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.2038'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16570', 'vk6.16661', 'vk6.18134', 'vk6.18470', 'vk6.22969', 'vk6.23088', 'vk6.24589', 'vk6.25002', 'vk6.34970', 'vk6.35089', 'vk6.35393', 'vk6.35812', 'vk6.36732', 'vk6.37151', 'vk6.39393', 'vk6.41586', 'vk6.42539', 'vk6.42648', 'vk6.42866', 'vk6.43143', 'vk6.44000', 'vk6.44312', 'vk6.45969', 'vk6.47645', 'vk6.54817', 'vk6.55367', 'vk6.56232', 'vk6.57415', 'vk6.59245', 'vk6.59804', 'vk6.60832', 'vk6.62082', 'vk6.64799', 'vk6.64862', 'vk6.65597', 'vk6.65904', 'vk6.68097', 'vk6.68160', 'vk6.68668', 'vk6.68879'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2U1O3U4U5O6O4U2O5U3U6 |
R3 orbit | {'O1O2U1O3U4U5O6O4U2O5U3U6', 'O1O2U3O4U2U5O6O3U6U1O5U4'} |
R3 orbit length | 2 |
Gauss code of -K | O1O2U3U4O5U1O6O3U5U6O4U2 |
Gauss code of K* | O1O2U3U4O3U1O5O6U2U5O4U6 |
Gauss code of -K* | O1O2U3O4U5U1O3O5U2O6U4U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 0 0 0 1 0],[ 1 0 1 1 1 0 1],[ 0 -1 0 0 0 1 0],[ 0 -1 0 0 -1 1 -1],[ 0 -1 0 1 0 0 1],[-1 0 -1 -1 0 0 0],[ 0 -1 0 1 -1 0 0]] |
Primitive based matrix | [[ 0 1 0 0 0 -1],[-1 0 0 0 -1 0],[ 0 0 0 1 1 -1],[ 0 0 -1 0 1 -1],[ 0 1 -1 -1 0 -1],[ 1 0 1 1 1 0]] |
If based matrix primitive | False |
Phi of primitive based matrix | [-1,0,0,0,1,0,0,1,0,-1,-1,1,-1,1,1] |
Phi over symmetry | [-1,0,0,0,1,0,0,0,2,-1,-1,1,-1,1,0] |
Phi of -K | [-1,0,0,0,1,0,0,0,2,-1,-1,1,-1,1,0] |
Phi of K* | [-1,0,0,0,1,0,1,1,2,-1,-1,0,-1,0,0] |
Phi of -K* | [-1,0,0,0,1,1,1,1,0,-1,-1,1,-1,0,0] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 11z+23 |
Enhanced Jones-Krushkal polynomial | 11w^2z+23w |
Inner characteristic polynomial | t^5+7t^3+4t |
Outer characteristic polynomial | t^6+9t^4+12t^2 |
Flat arrow polynomial | -4*K1**2 + 2*K2 + 3 |
2-strand cable arrow polynomial | -64*K1**6 + 192*K1**4*K2 - 1472*K1**4 - 544*K1**2*K2**2 + 2032*K1**2*K2 - 436*K1**2 + 352*K1*K2*K3 - 48*K2**4 + 32*K2**2*K4 - 608*K2**2 - 60*K3**2 - 4*K4**2 + 626 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}]] |
If K is slice | False |