Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.203

Min(phi) over symmetries of the knot is: [-3,-2,-1,1,2,3,-1,1,3,3,3,1,2,2,2,1,1,2,1,2,1]
Flat knots (up to 7 crossings) with same phi are :['6.203']
Arrow polynomial of the knot is: -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.65', '6.137', '6.201', '6.203', '6.214', '6.310', '6.314', '6.332', '6.385', '6.386', '6.401', '6.516', '6.564', '6.571', '6.572', '6.578', '6.621', '6.626', '6.716', '6.773', '6.807', '6.814', '6.821', '6.940', '6.966', '6.1036', '6.1071', '6.1108', '6.1111', '6.1131', '6.1188', '6.1203', '6.1206', '6.1220', '6.1340', '6.1387', '6.1548', '6.1663', '6.1680', '6.1693', '6.1831', '6.1932']
Outer characteristic polynomial of the knot is: t^7+82t^5+46t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.203']
2-strand cable arrow polynomial of the knot is: 320*K1**4*K2 - 2352*K1**4 - 544*K1**3*K3 - 2208*K1**2*K2**2 - 608*K1**2*K2*K4 + 7040*K1**2*K2 - 1008*K1**2*K3**2 - 128*K1**2*K3*K5 - 624*K1**2*K4**2 - 32*K1**2*K4*K6 - 6320*K1**2 - 544*K1*K2**2*K3 - 32*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 6240*K1*K2*K3 + 3152*K1*K3*K4 + 880*K1*K4*K5 + 32*K1*K5*K6 - 208*K2**4 - 224*K2**2*K3**2 - 112*K2**2*K4**2 + 1344*K2**2*K4 - 4916*K2**2 + 352*K2*K3*K5 + 96*K2*K4*K6 - 2932*K3**2 - 1664*K4**2 - 332*K5**2 - 28*K6**2 + 5486
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.203']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11013', 'vk6.11092', 'vk6.12179', 'vk6.12286', 'vk6.18210', 'vk6.18545', 'vk6.24670', 'vk6.25092', 'vk6.30578', 'vk6.30673', 'vk6.31848', 'vk6.31895', 'vk6.36798', 'vk6.37252', 'vk6.44039', 'vk6.44379', 'vk6.51812', 'vk6.51879', 'vk6.52676', 'vk6.52770', 'vk6.56004', 'vk6.56277', 'vk6.60541', 'vk6.60881', 'vk6.63492', 'vk6.63536', 'vk6.63970', 'vk6.64014', 'vk6.65663', 'vk6.65945', 'vk6.68709', 'vk6.68917']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U2O6U3U5U6U1U4
R3 orbit {'O1O2O3O4O5U2O6U3U5U6U1U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U2U5U6U1U3O6U4
Gauss code of K* O1O2O3O4O5U4U6U1U5U2O6U3
Gauss code of -K* O1O2O3O4O5U3O6U4U1U5U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -3 -2 3 1 2],[ 1 0 -2 -1 3 1 2],[ 3 2 0 1 3 2 2],[ 2 1 -1 0 3 1 2],[-3 -3 -3 -3 0 -1 1],[-1 -1 -2 -1 1 0 1],[-2 -2 -2 -2 -1 -1 0]]
Primitive based matrix [[ 0 3 2 1 -1 -2 -3],[-3 0 1 -1 -3 -3 -3],[-2 -1 0 -1 -2 -2 -2],[-1 1 1 0 -1 -1 -2],[ 1 3 2 1 0 -1 -2],[ 2 3 2 1 1 0 -1],[ 3 3 2 2 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,-1,1,2,3,-1,1,3,3,3,1,2,2,2,1,1,2,1,2,1]
Phi over symmetry [-3,-2,-1,1,2,3,-1,1,3,3,3,1,2,2,2,1,1,2,1,2,1]
Phi of -K [-3,-2,-1,1,2,3,0,0,2,3,3,0,2,2,2,1,1,1,0,1,2]
Phi of K* [-3,-2,-1,1,2,3,2,1,1,2,3,0,1,2,3,1,2,2,0,0,0]
Phi of -K* [-3,-2,-1,1,2,3,1,2,2,2,3,1,1,2,3,1,2,3,1,1,-1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+54t^4+16t^2+1
Outer characteristic polynomial t^7+82t^5+46t^3+6t
Flat arrow polynomial -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
2-strand cable arrow polynomial 320*K1**4*K2 - 2352*K1**4 - 544*K1**3*K3 - 2208*K1**2*K2**2 - 608*K1**2*K2*K4 + 7040*K1**2*K2 - 1008*K1**2*K3**2 - 128*K1**2*K3*K5 - 624*K1**2*K4**2 - 32*K1**2*K4*K6 - 6320*K1**2 - 544*K1*K2**2*K3 - 32*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 6240*K1*K2*K3 + 3152*K1*K3*K4 + 880*K1*K4*K5 + 32*K1*K5*K6 - 208*K2**4 - 224*K2**2*K3**2 - 112*K2**2*K4**2 + 1344*K2**2*K4 - 4916*K2**2 + 352*K2*K3*K5 + 96*K2*K4*K6 - 2932*K3**2 - 1664*K4**2 - 332*K5**2 - 28*K6**2 + 5486
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}]]
If K is slice False
Contact