Min(phi) over symmetries of the knot is: [-1,-1,0,0,1,1,-1,0,2,1,1,0,0,0,1,0,1,0,1,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.2004'] |
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063'] |
Outer characteristic polynomial of the knot is: t^7+14t^5+31t^3+14t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.2004'] |
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 1760*K1**4*K2 - 3472*K1**4 + 224*K1**3*K2*K3 - 480*K1**3*K3 + 1152*K1**2*K2**3 - 7392*K1**2*K2**2 - 288*K1**2*K2*K4 + 9448*K1**2*K2 - 48*K1**2*K3**2 - 4608*K1**2 - 736*K1*K2**2*K3 + 5560*K1*K2*K3 + 152*K1*K3*K4 - 976*K2**4 + 816*K2**2*K4 - 3368*K2**2 - 1080*K3**2 - 132*K4**2 + 3658 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.2004'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16539', 'vk6.16631', 'vk6.17513', 'vk6.17570', 'vk6.18865', 'vk6.18943', 'vk6.19196', 'vk6.19491', 'vk6.23065', 'vk6.24114', 'vk6.25491', 'vk6.25566', 'vk6.26005', 'vk6.26391', 'vk6.34940', 'vk6.35058', 'vk6.36294', 'vk6.36361', 'vk6.37596', 'vk6.37685', 'vk6.42512', 'vk6.42623', 'vk6.43475', 'vk6.44594', 'vk6.54784', 'vk6.54872', 'vk6.56444', 'vk6.56546', 'vk6.59298', 'vk6.60190', 'vk6.66104', 'vk6.66146'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2U1O3U4O5U3U2O6O4U6U5 |
R3 orbit | {'O1O2U1O3U4O5U3U2O6O4U6U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2U3U4O5O4U1U6O3U5O6U2 |
Gauss code of K* | O1O2U3U4O3O5U6U2O6U1O4U5 |
Gauss code of -K* | O1O2U3O4U2O5U1U5O3O6U4U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 1 0 0 1 -1],[ 1 0 1 0 0 1 0],[-1 -1 0 0 -2 1 -1],[ 0 0 0 0 0 0 -1],[ 0 0 2 0 0 0 -1],[-1 -1 -1 0 0 0 0],[ 1 0 1 1 1 0 0]] |
Primitive based matrix | [[ 0 1 1 0 0 -1 -1],[-1 0 1 0 -2 -1 -1],[-1 -1 0 0 0 0 -1],[ 0 0 0 0 0 -1 0],[ 0 2 0 0 0 -1 0],[ 1 1 0 1 1 0 0],[ 1 1 1 0 0 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,0,0,1,1,-1,0,2,1,1,0,0,0,1,0,1,0,1,0,0] |
Phi over symmetry | [-1,-1,0,0,1,1,-1,0,2,1,1,0,0,0,1,0,1,0,1,0,0] |
Phi of -K | [-1,-1,0,0,1,1,0,0,0,1,2,1,1,1,1,0,-1,1,1,1,-1] |
Phi of K* | [-1,-1,0,0,1,1,-1,1,1,1,2,-1,1,1,1,0,1,0,1,0,0] |
Phi of -K* | [-1,-1,0,0,1,1,0,0,0,1,1,1,1,0,1,0,0,0,0,2,-1] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 4z^2+25z+35 |
Enhanced Jones-Krushkal polynomial | 4w^3z^2+25w^2z+35w |
Inner characteristic polynomial | t^6+10t^4+15t^2+4 |
Outer characteristic polynomial | t^7+14t^5+31t^3+14t |
Flat arrow polynomial | -8*K1**2 + 4*K2 + 5 |
2-strand cable arrow polynomial | -192*K1**4*K2**2 + 1760*K1**4*K2 - 3472*K1**4 + 224*K1**3*K2*K3 - 480*K1**3*K3 + 1152*K1**2*K2**3 - 7392*K1**2*K2**2 - 288*K1**2*K2*K4 + 9448*K1**2*K2 - 48*K1**2*K3**2 - 4608*K1**2 - 736*K1*K2**2*K3 + 5560*K1*K2*K3 + 152*K1*K3*K4 - 976*K2**4 + 816*K2**2*K4 - 3368*K2**2 - 1080*K3**2 - 132*K4**2 + 3658 |
Genus of based matrix | 0 |
Fillings of based matrix | [[{2, 6}, {1, 5}, {3, 4}]] |
If K is slice | True |