Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.2001

Min(phi) over symmetries of the knot is: [-1,-1,0,0,1,1,-1,-1,0,1,2,1,1,0,0,0,1,0,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.2001']
Arrow polynomial of the knot is: -12*K1**2 + 6*K2 + 7
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.612', '6.1246', '6.1402', '6.1410', '6.1411', '6.1468', '6.1617', '6.1666', '6.1667', '6.1815', '6.1904', '6.1994', '6.1995', '6.1996', '6.2001', '6.2014', '6.2015', '6.2016', '6.2017', '6.2020', '6.2022']
Outer characteristic polynomial of the knot is: t^7+14t^5+31t^3+11t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.2001']
2-strand cable arrow polynomial of the knot is: -64*K1**6 - 320*K1**4*K2**2 + 3264*K1**4*K2 - 5840*K1**4 + 160*K1**3*K2*K3 - 992*K1**3*K3 + 1952*K1**2*K2**3 - 9888*K1**2*K2**2 - 384*K1**2*K2*K4 + 12176*K1**2*K2 - 112*K1**2*K3**2 - 4780*K1**2 - 1888*K1*K2**2*K3 + 7792*K1*K2*K3 + 504*K1*K3*K4 - 1536*K2**4 + 1656*K2**2*K4 - 4296*K2**2 - 1580*K3**2 - 344*K4**2 + 4518
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.2001']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13881', 'vk6.13978', 'vk6.14133', 'vk6.14356', 'vk6.14952', 'vk6.15075', 'vk6.15589', 'vk6.16059', 'vk6.16283', 'vk6.16308', 'vk6.17415', 'vk6.22598', 'vk6.22631', 'vk6.23927', 'vk6.33700', 'vk6.33777', 'vk6.34146', 'vk6.34260', 'vk6.34586', 'vk6.36194', 'vk6.36219', 'vk6.42284', 'vk6.53867', 'vk6.53910', 'vk6.54106', 'vk6.54412', 'vk6.54570', 'vk6.55574', 'vk6.59023', 'vk6.59042', 'vk6.60069', 'vk6.64570']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U1O3U4O5U3U2O4O6U5U6
R3 orbit {'O1O2U1O3U4O5U3U2O4O6U5U6'}
R3 orbit length 1
Gauss code of -K O1O2U3U4O3O5U1U6O4U5O6U2
Gauss code of K* O1O2U3U4O5O4U6U2O6U1O3U5
Gauss code of -K* O1O2U3O4U2O5U1U5O6O3U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 1 0 -1 0 1],[ 1 0 1 0 0 1 0],[-1 -1 0 0 -2 1 1],[ 0 0 0 0 0 0 1],[ 1 0 2 0 0 0 0],[ 0 -1 -1 0 0 0 1],[-1 0 -1 -1 0 -1 0]]
Primitive based matrix [[ 0 1 1 0 0 -1 -1],[-1 0 1 1 0 -1 -2],[-1 -1 0 -1 -1 0 0],[ 0 -1 1 0 0 -1 0],[ 0 0 1 0 0 0 0],[ 1 1 0 1 0 0 0],[ 1 2 0 0 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,1,1,-1,-1,0,1,2,1,1,0,0,0,1,0,0,0,0]
Phi over symmetry [-1,-1,0,0,1,1,-1,-1,0,1,2,1,1,0,0,0,1,0,0,0,0]
Phi of -K [-1,-1,0,0,1,1,0,0,1,1,2,1,1,0,2,0,2,0,1,0,-1]
Phi of K* [-1,-1,0,0,1,1,-1,0,0,2,2,1,2,0,1,0,1,1,1,0,0]
Phi of -K* [-1,-1,0,0,1,1,0,0,0,0,2,0,1,0,1,0,1,0,1,-1,-1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 4z^2+25z+35
Enhanced Jones-Krushkal polynomial 4w^3z^2+25w^2z+35w
Inner characteristic polynomial t^6+10t^4+15t^2+4
Outer characteristic polynomial t^7+14t^5+31t^3+11t
Flat arrow polynomial -12*K1**2 + 6*K2 + 7
2-strand cable arrow polynomial -64*K1**6 - 320*K1**4*K2**2 + 3264*K1**4*K2 - 5840*K1**4 + 160*K1**3*K2*K3 - 992*K1**3*K3 + 1952*K1**2*K2**3 - 9888*K1**2*K2**2 - 384*K1**2*K2*K4 + 12176*K1**2*K2 - 112*K1**2*K3**2 - 4780*K1**2 - 1888*K1*K2**2*K3 + 7792*K1*K2*K3 + 504*K1*K3*K4 - 1536*K2**4 + 1656*K2**2*K4 - 4296*K2**2 - 1580*K3**2 - 344*K4**2 + 4518
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{4, 6}, {3, 5}, {1, 2}]]
If K is slice False
Contact