Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1999

Min(phi) over symmetries of the knot is: [-1,0,0,0,0,1,0,0,0,1,2,-1,0,-1,0,0,0,0,-1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1999']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+11t^5+19t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1978', '6.1999', '7.45964']
2-strand cable arrow polynomial of the knot is: -128*K1**6 + 864*K1**4*K2 - 5824*K1**4 - 544*K1**3*K3 - 2144*K1**2*K2**2 + 9240*K1**2*K2 - 3160*K1**2 + 2248*K1*K2*K3 - 128*K2**4 + 128*K2**2*K4 - 3192*K2**2 - 552*K3**2 - 32*K4**2 + 3222
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1999']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3659', 'vk6.3756', 'vk6.3949', 'vk6.4046', 'vk6.4473', 'vk6.4570', 'vk6.5855', 'vk6.5984', 'vk6.7144', 'vk6.7321', 'vk6.7414', 'vk6.7912', 'vk6.8033', 'vk6.9342', 'vk6.17904', 'vk6.18001', 'vk6.18758', 'vk6.24443', 'vk6.24877', 'vk6.25340', 'vk6.37505', 'vk6.43870', 'vk6.44232', 'vk6.44537', 'vk6.48299', 'vk6.48364', 'vk6.50082', 'vk6.50196', 'vk6.50573', 'vk6.50638', 'vk6.55865', 'vk6.60732']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U1O3U2O4U5U4O6O5U3U6
R3 orbit {'O1O2U1O3U2O4U5U4O6O5U3U6'}
R3 orbit length 1
Gauss code of -K O1O2U3U4O5O3U6U5O6U1O4U2
Gauss code of K* O1O2U3U1O4O3U5U6O5U4O6U2
Gauss code of -K* O1O2U1O3U4O5U3U5O6O4U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 0 1 0 0],[ 1 0 1 1 0 1 0],[ 0 -1 0 1 0 0 1],[ 0 -1 -1 0 1 -1 0],[-1 0 0 -1 0 -1 -1],[ 0 -1 0 1 1 0 0],[ 0 0 -1 0 1 0 0]]
Primitive based matrix [[ 0 1 0 0 0 0 -1],[-1 0 0 -1 -1 -1 0],[ 0 0 0 1 1 0 -1],[ 0 1 -1 0 0 0 0],[ 0 1 -1 0 0 -1 -1],[ 0 1 0 0 1 0 -1],[ 1 0 1 0 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,0,0,0,0,1,0,1,1,1,0,-1,-1,0,1,0,0,0,1,1,1]
Phi over symmetry [-1,0,0,0,0,1,0,0,0,1,2,-1,0,-1,0,0,0,0,-1,1,0]
Phi of -K [-1,0,0,0,0,1,0,0,0,1,2,-1,0,-1,1,1,0,0,0,0,0]
Phi of K* [-1,0,0,0,0,1,0,0,0,1,2,-1,0,-1,0,0,0,0,-1,1,0]
Phi of -K* [-1,0,0,0,0,1,0,1,1,1,0,-1,0,0,1,0,1,0,1,1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 19z+39
Enhanced Jones-Krushkal polynomial 19w^2z+39w
Inner characteristic polynomial t^6+9t^4+11t^2
Outer characteristic polynomial t^7+11t^5+19t^3+5t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -128*K1**6 + 864*K1**4*K2 - 5824*K1**4 - 544*K1**3*K3 - 2144*K1**2*K2**2 + 9240*K1**2*K2 - 3160*K1**2 + 2248*K1*K2*K3 - 128*K2**4 + 128*K2**2*K4 - 3192*K2**2 - 552*K3**2 - 32*K4**2 + 3222
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {5}, {1, 4}, {3}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact