Gauss code |
O1O2U1O3U2O4U3U5O6O5U4U6 |
R3 orbit |
{'O1O2U1O3U2O4U3U5O6O5U4U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2U3U4O5O3U5U6O4U1O6U2 |
Gauss code of K* |
O1O2U3U2O4O3U5U6O5U1O6U4 |
Gauss code of -K* |
O1O2U3O4U2O5U4U5O6O3U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 0 0 0 1 0],[ 1 0 1 1 0 1 0],[ 0 -1 0 1 1 0 0],[ 0 -1 -1 0 1 0 1],[ 0 0 -1 -1 0 0 0],[-1 -1 0 0 0 0 0],[ 0 0 0 -1 0 0 0]] |
Primitive based matrix |
[[ 0 1 0 0 0 0 -1],[-1 0 0 0 0 0 -1],[ 0 0 0 1 1 0 -1],[ 0 0 -1 0 1 1 -1],[ 0 0 -1 -1 0 0 0],[ 0 0 0 -1 0 0 0],[ 1 1 1 1 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,0,0,0,0,1,0,0,0,0,1,-1,-1,0,1,-1,-1,1,0,0,0] |
Phi over symmetry |
[-1,0,0,0,0,1,0,0,0,0,1,-1,-1,0,1,-1,-1,1,0,0,0] |
Phi of -K |
[-1,0,0,0,0,1,0,0,1,1,1,-1,-1,0,1,-1,-1,1,0,1,1] |
Phi of K* |
[-1,0,0,0,0,1,1,1,1,1,1,-1,-1,0,1,-1,1,0,0,0,1] |
Phi of -K* |
[-1,0,0,0,0,1,0,0,1,1,1,0,-1,-1,0,-1,0,0,-1,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
21z+43 |
Enhanced Jones-Krushkal polynomial |
21w^2z+43w |
Inner characteristic polynomial |
t^6+7t^4+6t^2+1 |
Outer characteristic polynomial |
t^7+9t^5+16t^3+4t |
Flat arrow polynomial |
-12*K1**2 + 6*K2 + 7 |
2-strand cable arrow polynomial |
-640*K1**6 - 192*K1**4*K2**2 + 1792*K1**4*K2 - 7840*K1**4 + 320*K1**3*K2*K3 - 480*K1**3*K3 - 4128*K1**2*K2**2 - 96*K1**2*K2*K4 + 11344*K1**2*K2 - 96*K1**2*K3**2 - 2624*K1**2 + 3248*K1*K2*K3 + 48*K1*K3*K4 - 176*K2**4 + 160*K2**2*K4 - 3544*K2**2 - 656*K3**2 - 40*K4**2 + 3598 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{4, 6}, {1, 5}, {2, 3}], [{6}, {1, 5}, {4}, {2, 3}]] |
If K is slice |
False |